Catecholamine-synthesizing enzymes and chromogranin proteins in drug-induced proliferative lesions of the rat adrenal medulla. 1990

A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts.

Both epinephrine (E) and norepinephrine (NE) cells in the rat adrenal medulla are able to proliferate in response to pharmacologic stimulation. However, previous biochemical studies have suggested that drug-induced or spontaneous pheochromocytomas in rats are almost invariably NE-producing. To resolve these apparently conflicting data, immunocytochemical techniques were utilized to establish functional profiles of adrenal medullary lesions classified as pheochromocytoma or nodular hyperplasia in rats treated chronically with a phosphodiesterase inhibitor which induced pheochromocytomas. Sixteen of 17 pheochromocytomas and all hyperplastic nodules stained positively for tyrosine hydroxylase and dopamine beta-hydroxylase, consistent with an ability to produce NE. No lesion of either type stained for phenylethanolamine N-methyltransferase, consistent with an inability to produce epinephrine. Lesions of both types showed variable staining for chromogranin proteins. The findings indicate that qualitative functional differences cannot be used to discriminate hyperplastic nodules from small pheochromocytomas in rats. Some lesions currently classified as hyperplastic nodules might in fact be small pheochromocytomas. Others might represent diffuse hyperplasia within pre-existing islands of NE-cells in a background of hyperplastic epinephrine-cells.

UI MeSH Term Description Entries
D006965 Hyperplasia An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells. Hyperplasias
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D010673 Pheochromocytoma A usually benign, well-encapsulated, lobular, vascular tumor of chromaffin tissue of the ADRENAL MEDULLA or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of EPINEPHRINE and NOREPINEPHRINE, is HYPERTENSION, which may be persistent or intermittent. During severe attacks, there may be HEADACHE; SWEATING, palpitation, apprehension, TREMOR; PALLOR or FLUSHING of the face, NAUSEA and VOMITING, pain in the CHEST and ABDOMEN, and paresthesias of the extremities. The incidence of malignancy is as low as 5% but the pathologic distinction between benign and malignant pheochromocytomas is not clear. (Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1298) Pheochromocytoma, Extra-Adrenal,Extra-Adrenal Pheochromocytoma,Extra-Adrenal Pheochromocytomas,Pheochromocytoma, Extra Adrenal,Pheochromocytomas,Pheochromocytomas, Extra-Adrenal
D011724 Pyridazines Six-membered rings with two adjacent nitrogen atoms also called 1,2-diazine.
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002864 Chromogranins A group of acidic proteins that are major components of SECRETORY GRANULES in the endocrine and neuroendocrine cells. They play important roles in the aggregation, packaging, sorting, and processing of secretory protein prior to secretion. They are cleaved to release biologically active peptides. There are various types of granins, usually classified by their sources. Chromogranin,Granin,Secretogranin,Secretogranins,Granins

Related Publications

A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
September 1999, Toxicological sciences : an official journal of the Society of Toxicology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
October 1986, The Journal of clinical endocrinology and metabolism,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
August 1988, The Journal of endocrinology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
March 1986, Japanese journal of pharmacology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
July 1991, Journal of developmental physiology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
April 1971, The American journal of physiology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
June 1978, Rinsho byori. The Japanese journal of clinical pathology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
July 1995, Histochemistry and cell biology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
March 2012, European journal of applied physiology,
A S Tischler, and L A Ruzicka, and C S Van Pelt, and G E Sandusky
February 1997, Journal of molecular neuroscience : MN,
Copied contents to your clipboard!