Comparison of channels formed by poly C9, C5b-8 and the membrane attack complex of complement. 1990

L S Zalman, and H J Müller-Eberhard
Research Institute of Scripps Clinic, Department of Immunology, La Jolla, CA 92037.

The channels formed by poly C9, C5b-8 and C5b-9 were examined using the liposome swelling assay. By plotting the relative rate of swelling of C5b-8-containing liposomes vs the molecular weight of the sugar solute and by applying the Renkin equation, the size of the C5b-8 channel was estimated to be 1.5 mm radius. As increasing amounts of C9 were added during the formation of C5b-9, in C8:C9 ratios of 1:1, 1:2, 1:6 and 1:12, the size of the function channel increased. Poly C9 had a pore that was somewhat larger than C5b-9 at a C8:C9 ratio of 1:12. Using molecular sieving experiments with four different iodinated protein size markers, the channel diameter of poly C9 was estimated at between 90 and 100 A. Monoclonal antibodies to different complement proteins were added to the liposomes to see which might inhibit the channels. C5b-8 containing liposomes could be inhibited by antibodies to C8. Liposomes containing C5b-9 could be inhibited slightly by antibodies to C9 and most strongly by antibodies to the neoantigen of poly C9.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003186 Complement C9 A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections. C9 Complement,Complement 9,Complement Component 9,C9, Complement,Complement, C9,Component 9, Complement
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015938 Complement Membrane Attack Complex A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC. Complement Complex C5b-9,Membrane Attack Complex,C 5b-9,C5b-8-poly-C9,C5b-9,Cytolytic Terminal Complement Complex,Terminal Complement Complex,C5b 8 poly C9,Complement Complex C5b 9,Complement Complex, Terminal,Complex, Terminal Complement
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

L S Zalman, and H J Müller-Eberhard
January 1985, Journal of immunology (Baltimore, Md. : 1950),
L S Zalman, and H J Müller-Eberhard
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
L S Zalman, and H J Müller-Eberhard
January 1988, Methods in enzymology,
L S Zalman, and H J Müller-Eberhard
January 1993, Immunologic research,
L S Zalman, and H J Müller-Eberhard
February 2016, Nature communications,
L S Zalman, and H J Müller-Eberhard
February 1983, Molecular immunology,
L S Zalman, and H J Müller-Eberhard
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!