New insights into the glycosylation of the surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a. 2006

Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria.

The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-L-Rhap-(1-->] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1--> core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band represents nonglycosylated S-layer protein.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D001406 Bacillaceae A family of bacteria which produce endospores. They are mostly saprophytes from soil, but a few are insect or animal parasites or pathogens.
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry
D020134 Catalytic Domain The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic

Related Publications

Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
February 2002, The Journal of biological chemistry,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
January 2008, Biotechnology and applied biochemistry,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
January 2005, FEMS microbiology letters,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
December 2002, Journal of bacteriology,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
August 1986, Carbohydrate research,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
September 2007, Small (Weinheim an der Bergstrasse, Germany),
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
April 2007, Journal of bacteriology,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
April 2004, Microbiology (Reading, England),
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
January 1986, Journal of ultrastructure and molecular structure research,
Kerstin Steiner, and Gottfried Pohlentz, and Klaus Dreisewerd, and Stefan Berkenkamp, and Paul Messner, and Jasna Peter-Katalinić, and Christina Schäffer
January 2010, Biomacromolecules,
Copied contents to your clipboard!