Effects of local anesthetics on mechanical characteristics of lipid bilayers and on the ion transport dynamics. 1990

T Hianik, and A Palacková, and J Pavelková
Department of Biophysics, Faculty of Mathematics and Physics, Comenius University, Bratislava, Czechoslovakia.

Bilayer lipid membranes (BLM) of various composition were used to study the effects of local anesthetics (LA) carbisocaine and lidocaine on mechanical membrane characteristics and on the transport dynamics of ions across gramicidin D ionic channels. Carbisocaine concentrations of 20 mumols/l-0.1 mmol/l caused a considerable decrease (by 15-40%) in modulus of elasticity E1 in direction perpendicular to membrane surface. The effect of lidocaine was approx. one order of magnitude weaker. LA-induced changes in E1 were shown to depend on both the lipid composition of the membrane and the electrolyte pH. Neutral forms of LA induce marked changes in E1. An analysis of current-voltage (I-V) characteristics of BLM modified by the channel forming agent gramicidin D revealed that carbisocaine significantly affects the superlinear segment of the I-V relationship; this suggests a strong effect on the transport dynamics of ions through the internal channel region. The results of the study suggest that the action of both carbisocaine and lidocaine may be non-specific. The effectivity of the non-specific action of LA is determined by the hydrophobic moiety of the local anesthetic molecule.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic

Related Publications

T Hianik, and A Palacková, and J Pavelková
February 1979, Experimental eye research,
T Hianik, and A Palacková, and J Pavelková
January 1970, Biochimica et biophysica acta,
T Hianik, and A Palacková, and J Pavelková
May 1984, Biochemistry,
T Hianik, and A Palacková, and J Pavelková
May 2005, Colloids and surfaces. B, Biointerfaces,
T Hianik, and A Palacková, and J Pavelková
November 2015, Chemistry and physics of lipids,
T Hianik, and A Palacková, and J Pavelková
January 1982, The Journal of membrane biology,
T Hianik, and A Palacková, and J Pavelková
December 1992, Biochimica et biophysica acta,
T Hianik, and A Palacková, and J Pavelková
May 1987, Biochimica et biophysica acta,
T Hianik, and A Palacková, and J Pavelková
December 2012, Biochimica et biophysica acta,
T Hianik, and A Palacková, and J Pavelková
January 2021, Frontiers in chemistry,
Copied contents to your clipboard!