Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. 1990

J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis 46202.

Human marrow cells positive for the CD34 antigen but not expressing HLA-DR, CD15, or CD71 antigens were isolated. In a liquid culture system supplemented with 48-hourly additions of recombinant interleukins IL-1 alpha, IL-3, IL-6, or granulocyte/macrophage colony-stimulating factor (GM-CSF), these cells were capable of sustaining in vitro hematopoiesis for up to eight weeks. The establishment of an adherent cell layer was never observed. Cultures containing no exogenous cytokine produced clonogenic cells for only 1 wk. IL-1 alpha and IL-6 were alone able to support hematopoiesis for 2 or 3 wk. Cells maintained with GM-CSF proliferated and contained assayable colony-forming cells for 3 or 4 wk, while maximal cellular expansion and generation of assayable progenitor cells occurred in the presence of IL-3 for 4-5 wk. When IL-3 was combined with IL-1 alpha or IL-6, hematopoiesis was sustained for 8 wks. Basophil numbers were markedly increased in the presence of IL-3. These studies indicate that marrow subpopulations can sustain hematopoiesis in vitro in the presence of repeated additions of cytokines. We conclude that a major function of marrow adherent cells in long-term cultures is that of providing cytokines which promote the proliferation and differentiation of primitive hematopoietic cells.

UI MeSH Term Description Entries
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming

Related Publications

J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
April 2000, Cell structure and function,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
August 1988, Journal of virology,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
January 1989, Biotechnology therapeutics,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
January 1984, Kroc Foundation series,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
January 1997, Methods in molecular biology (Clifton, N.J.),
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
January 1990, Methods in molecular biology (Clifton, N.J.),
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
April 1991, Seminars in hematology,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
January 2007, The Journal of experimental medicine,
J Brandt, and E F Srour, and K van Besien, and R A Briddell, and R Hoffman
November 1996, Blood,
Copied contents to your clipboard!