Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water. 2006

N Dogan, and J V Siebers, and P J Keall
Radiation Oncology Department, Virginia Commonwealth University Medical Center, 401 College Street, Richmond, 23298, USA. ndogan@vcu.edu

Conventional photon radiation therapy dose-calculation algorithms typically compute and report the absorbed dose to water (D(w)). Monte Carlo (MC) dose-calculation algorithms, however, generally compute and report the absorbed dose to the material (D(m)). As MC-calculation algorithms are being introduced into routine clinical usage, the question as to whether there is a clinically significant difference between D(w) and D(m) remains. The goal of the current study is to assess the differences between dose-volume indices for D(m) and D(w) MC-calculated IMRT plans. Ten head-and-neck (H&N) and ten prostate cancer patients were selected for this study. MC calculations were performed using an EGS4-based system. Converting D(m) to D(w) for MC-based calculations was accomplished as a post-MC calculation process. D(w) and D(m) results for target and critical structures were evaluated using the dose-volume-based indices. For H&N IMRT plans, systematic differences between dose-volume indices computed with D(w) and D(m) were up to 2.9% for the PTV prescription dose (D(98)), up to 5.8% for maximum (D(2)) dose to the PTV and up to 2.7% for the critical structure dose indices. For prostate IMRT plans, the systematic differences between D(w)- and D(m)-based computed indices were up to 3.5% for the prescription dose (D(98)) to the PTVs, up to 2.0% for the maximum (D(2)) dose to the PTVs and up to 8% for the femoral heads due to their higher water/bone mass stopping power ratio. This study showed that converting D(m) to D(w) in MC-calculated IMRT treatment plans introduces a systematic error in target and critical structure DVHs. In some cases, this systematic error may reach up to 5.8% for H&N and 8.0% for prostate cases when the hard-bone-containing structures such as femoral heads are present. Ignoring differences between D(m) and D(w) will result in systematic dose errors ranging from 0% to 8%.

UI MeSH Term Description Entries
D008297 Male Males
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D006258 Head and Neck Neoplasms Soft tissue tumors or cancer arising from the mucosal surfaces of the LIP; oral cavity; PHARYNX; LARYNX; and cervical esophagus. Other sites included are the NOSE and PARANASAL SINUSES; SALIVARY GLANDS; THYROID GLAND and PARATHYROID GLANDS; and MELANOMA and non-melanoma skin cancers of the head and neck. (from Holland et al., Cancer Medicine, 4th ed, p1651) Cancer of Head and Neck,Head Cancer,Head Neoplasm,Head and Neck Cancer,Head and Neck Neoplasm,Neck Cancer,Neck Neoplasm,Neck Neoplasms,Neoplasms, Upper Aerodigestive Tract,UADT Neoplasm,Upper Aerodigestive Tract Neoplasm,Upper Aerodigestive Tract Neoplasms,Cancer of Head,Cancer of Neck,Cancer of the Head,Cancer of the Head and Neck,Cancer of the Neck,Head Neoplasms,Head, Neck Neoplasms,Neoplasms, Head,Neoplasms, Head and Neck,Neoplasms, Neck,UADT Neoplasms,Cancer, Head,Cancer, Neck,Cancers, Head,Cancers, Neck,Head Cancers,Neck Cancers,Neoplasm, Head,Neoplasm, Neck,Neoplasm, UADT,Neoplasms, UADT
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

N Dogan, and J V Siebers, and P J Keall
April 2002, International journal of radiation oncology, biology, physics,
N Dogan, and J V Siebers, and P J Keall
December 2011, Journal of medical imaging and radiation oncology,
N Dogan, and J V Siebers, and P J Keall
April 2000, Physics in medicine and biology,
N Dogan, and J V Siebers, and P J Keall
July 2006, International journal of radiation oncology, biology, physics,
N Dogan, and J V Siebers, and P J Keall
December 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
N Dogan, and J V Siebers, and P J Keall
January 2010, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
N Dogan, and J V Siebers, and P J Keall
September 2009, Physics in medicine and biology,
N Dogan, and J V Siebers, and P J Keall
January 2011, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
N Dogan, and J V Siebers, and P J Keall
August 2000, Physics in medicine and biology,
Copied contents to your clipboard!