Conformational energy refinement of horse-heart ferricytochrome c. 1975

P K Warme, and H A Scheraga

The reported X-ray structure of horse-heart ferricytochrome c has been refined by conformational energy calculations, using a three-stage computational procedure. In stage I, the atomic positions are adjusted to conform to idealized bond lengths and bond angles characteristic of small amino acid derivatives, while yet remaining as close as possible to the X-ray coordinates. In stage II, atomic overlaps are eliminated by adjusting the backbone and side-chain dihedral angles to minimize the nonbonded energy, hydrogen-bonded energy, and rotational energy contributions. In the final stage of refinement, the electrostatic energy and a more accurate hydrogen-bonded energy treatment are considered, in addition to the energy contributions of stage II. A "fitting potential" of gradually decreasing strength is imposed in both stages II and III, in order to keep the computed structure as similar to the x-ray structure as is consistent with a low-energy conformation. The final computed structure of cytochrome c exhibits a very low conformational energy (-504 kcal/mol) and also closely resembles the X-ray structure (RMS deviation = 0.77 A for all atoms). However, a special treatment was required in order to alter the location of the phenyl ring of phenylalanine-82. In contrast to the originally published X-ray structure, which shows the phenyl ring pointing away from the heme, the phenyl ring in the computed structure is tucked into the heme crevice, in a position similar to that observed in the reduced form of tuna cytochrome c, in the oxidized form of Rhodospirillum rubrum cytochrome c2, and also in the recently determined structure of oxidized tuna cytochrome c.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

P K Warme, and H A Scheraga
March 1982, Biochemistry,
P K Warme, and H A Scheraga
May 1976, Biochemistry,
P K Warme, and H A Scheraga
August 1968, Biochemistry,
P K Warme, and H A Scheraga
August 1969, FEBS letters,
P K Warme, and H A Scheraga
June 1976, Journal of the American Chemical Society,
P K Warme, and H A Scheraga
February 1981, Science (New York, N.Y.),
Copied contents to your clipboard!