Circular single-stranded RNA replicon in Saccharomyces cerevisiae. 1990

Y Matsumoto, and R Fishel, and R B Wickner
Section on Genetics of Simple Eukaryotes, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.

Circular RNA replicons have been reported in plants and, in one case, in animal cells. We describe such an element in yeast. In certain yeast strains, a 20S RNA species appears on transfer of cells to acetate medium. This phenotype shows cytoplasmic (non-Mendelian) inheritance and the 20S RNA is associated with 23-kDa protein subunits as a 32S particle. We demonstrate that yeast 20S RNA is an independent replicon with no homology to host genomic, mitochondrial, or 2-microns plasmid DNA or to the L-A, L-BC, or M1 double-stranded RNA viruses of yeast. The circularity of the 20S RNA is shown by the apparent absence of 3' and 5' ends, by two-dimensional gel electrophoresis, and by electron microscopy. Replication of yeast 20S RNA proceeds through an RNA-RNA pathway, and a 10,000-fold amplification occurs on shift to acetate medium. The copy number of 20S RNA is also reduced severalfold by the SKI gene products, a host antiviral system that also lowers the copy numbers of yeast double-stranded RNA viruses. Yeast 20S RNA and the hepatitis delta virus show some similarities.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000079962 RNA, Circular RNA molecules in which the 3' and 5' ends are covalently joined to form a closed continuous loop. They are resistant to digestion by EXORIBONUCLEASES. Circular Intronic RNA,Circular RNA,Circular RNAs,Closed Circular RNA,ciRNA,circRNA,circRNAs,Circular RNA, Closed,Intronic RNA, Circular,RNA, Circular Intronic,RNA, Closed Circular,RNAs, Circular
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

Y Matsumoto, and R Fishel, and R B Wickner
January 1992, Annual review of microbiology,
Y Matsumoto, and R Fishel, and R B Wickner
December 1982, Gene,
Y Matsumoto, and R Fishel, and R B Wickner
January 2011, PloS one,
Y Matsumoto, and R Fishel, and R B Wickner
March 1996, Microbiological reviews,
Y Matsumoto, and R Fishel, and R B Wickner
January 1986, Basic life sciences,
Y Matsumoto, and R Fishel, and R B Wickner
September 1996, Yeast (Chichester, England),
Y Matsumoto, and R Fishel, and R B Wickner
November 1996, Molecular & general genetics : MGG,
Y Matsumoto, and R Fishel, and R B Wickner
February 2008, Genetics,
Y Matsumoto, and R Fishel, and R B Wickner
August 1984, Molecular and cellular biology,
Y Matsumoto, and R Fishel, and R B Wickner
August 1991, Mutation research,
Copied contents to your clipboard!