Enhanced expression of DNA topoisomerase II by recombinant human granulocyte colony-stimulating factor in human leukemia cells. 1990

M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
First Department of Internal Medicine, Nagoya University School of Medicine, Japan.

The effect of recombinant human granulocyte colony-stimulating factor (G-CSF) on DNA topoisomerase II (topo II) expression was studied in two human acute myelogenous leukemia cell lines, NKM-1 and NOMO-1, which express G-CSF receptor and proliferate in response to exogenous G-CSF. Northern blot analysis revealed that the level of topo II mRNA in 16-h stimulated cells in serum-free medium with G-CSF (10 ng/ml) was approximately 2-fold higher than that in cells without G-CSF. Enhanced topo II mRNA expression was detectable within 3 h after the addition of G-CSF. Topo II activity in crude nuclear extracts from 16-h G-CSF-stimulated cells was also found to be approximately 2-fold greater than that from unstimulated cells. According to in vitro cytotoxic assay, the sensitivity of G-CSF-stimulated cells to intercalating (daunorubicin) and nonintercalating (etoposide) topo II-targeting drugs increased significantly, whereas no enhancement of sensitivity was observed with an alkylating agent (4-hydroperoxycyclophosphamide). The augmented drug sensitivity observed was not due to the increased level of drug transport, as suggested by the similar extent of [3H]etoposide uptake between G-CSF-stimulated and unstimulated cells. By measuring the topo II mRNA and the cytotoxicity of the above mentioned drugs, we obtained essentially the same results in G-CSF-responsive leukemia cells isolated from three acute myeloblastic leukemia patients, as observed in the cultured cell lines. These findings strongly suggest that the sensitivity to "topo II-targeting drugs" could be augmented by exogenous G-CSF through elevated topo II activity in G-CSF-responsive leukemia cells.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
October 1995, The New England journal of medicine,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
June 1991, Blood,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
April 1989, Seminars in hematology,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
July 1991, BMJ (Clinical research ed.),
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
June 1992, Cancer research,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
May 2008, Journal of vascular surgery,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
January 1995, Pediatric hematology and oncology,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
January 1993, Journal of intravenous nursing : the official publication of the Intravenous Nurses Society,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
March 1993, Gan to kagaku ryoho. Cancer & chemotherapy,
M Towatari, and Y Ito, and Y Morishita, and M Tanimoto, and K Kawashima, and Y Morishima, and T Andoh, and H Saito
November 1987, Cancer research,
Copied contents to your clipboard!