Why transcortical reflexes? 1975

M Wiesendanger, and D G Rüegg, and G E Lucier

Experiments in humans and in monkeys have indicated that load perturbations, occurring during voluntary movements and postural activity, may be automatically compensated for. Overall muscle stiffness opposing load changes is determined by the visco-elastic properties of the muscle, by segmental reflex actions and finally by long-loop reflexes. Under certain circumstances, for instance when the subject or the experimental monkey is "prepared" to counteract perturbations which are unpredictable in time, the long-loop "reflexes" appear to be responsible for most of the corrective muscle tension. Experiments in anaesthetized monkeys revealed that signals from stretch afferents reach neurons of the motor cortex, possibly via a relay in the cortical area 3a. The latencies of these responses to well controlled muscle stretches were in the same range as motor cortical cell discharges recorded in alert monkeys subjected to load perturbations. Furthermore, these responses of cells in the motor cortex also had the appropriate timing to indicate a causal relationship with the long-latency electromyographic responses to load changes referred to above. These experimental results therefore strongly support the hypothesis, first proposed by Phillips (1969), of a transcortical servo-loop adjusting motor cortical output according to the load conditions in which movements are performed. The major advantage of transcortical regulations as opposed to segmental regulations, seems to be a powerful gain control acting at the cortical level; it was repeatedly shown that the long-loop reflexes are strongly modifiable and under voluntary control. It is suggested that an adaptive gain control at the cortical level is a prerequisite to preserve the complex capabilities of the motor cortex as the chief "executive" for skilled, preprogrammed movements. A loss of this adaptive gain control may be, at least partly, the cause of motor disorders such as rigidity in Parkinsonian patients, as reported by Tatton and Lee (1975). It is suggested that further investigations of the control of transcortical reflexes may aid in the understanding of the pathophysiology of motor disabilities.

UI MeSH Term Description Entries
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012026 Reflex, Stretch Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors. Reflex, Tendon,Stretch Reflex,Tendon Reflex
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Wiesendanger, and D G Rüegg, and G E Lucier
September 1978, Electroencephalography and clinical neurophysiology,
M Wiesendanger, and D G Rüegg, and G E Lucier
July 1981, Canadian journal of physiology and pharmacology,
M Wiesendanger, and D G Rüegg, and G E Lucier
December 1981, Revue d'electroencephalographie et de neurophysiologie clinique,
M Wiesendanger, and D G Rüegg, and G E Lucier
March 1990, Bratislavske lekarske listy,
M Wiesendanger, and D G Rüegg, and G E Lucier
October 2018, Rhode Island medical journal (2013),
M Wiesendanger, and D G Rüegg, and G E Lucier
February 1984, Neuroscience letters,
M Wiesendanger, and D G Rüegg, and G E Lucier
October 1984, Archives of neurology,
M Wiesendanger, and D G Rüegg, and G E Lucier
August 1981, Electroencephalography and clinical neurophysiology,
M Wiesendanger, and D G Rüegg, and G E Lucier
June 2018, Behavioral neuroscience,
M Wiesendanger, and D G Rüegg, and G E Lucier
February 2000, Neuroscience letters,
Copied contents to your clipboard!