Homologous recombination and the pattern of nucleotide substitution in Ehrlichia ruminantium. 2007

Austin L Hughes, and Jeffrey O French
Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg., 700 Sumter Street, Columbia, SC 29208, USA. austin@biol.sc.edu

Patterns of nucleotide substitution at orthologous loci were examined between three genomes of Ehrlichia ruminantium, the causative agent of heartwater disease of ruminants. The most recent common ancestor of two genomes (Erwe and Erwo) belonging to the Welgevonden strain was estimated to have occurred 26,500-57,000 years ago, while the most recent common ancestor of these two genomes and the Erga genome (Gardel strain) was estimated to have occurred 2.1-4.7 million years ago. The search for genes showing extremely high values of the number of synonymous substitutions per site was used to identify genes involved in past homologous recombination. The most striking case involved the map1 gene, encoding major antigenic protein-1; evidence for homologous recombination is consistent with previous phylogenetic analysis of map1 alleles. At this and certain other loci, homologous recombination may have contributed to the evolution of host-pathogen interactions. In addition, comparison of the patterns of synonymous and nonsynonymous substitution provided evidence for positive selection favoring a high level of amino acid change between the Welgevonden and Gardel strains at a locus of unknown function (designated Erum4340 in the Erwo genome).

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D016680 Genome, Bacterial The genetic complement of a BACTERIA as represented in its DNA. Bacterial Genome,Bacterial Genomes,Genomes, Bacterial
D016995 Ehrlichia ruminantium A species of gram-negative bacteria in the family ANAPLASMATACEAE, that causes HEARTWATER DISEASE in ruminants. Cowdria ruminantium
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational

Related Publications

Austin L Hughes, and Jeffrey O French
September 2007, Veterinary microbiology,
Austin L Hughes, and Jeffrey O French
November 2005, Emerging infectious diseases,
Austin L Hughes, and Jeffrey O French
January 2016, Frontiers in cellular and infection microbiology,
Austin L Hughes, and Jeffrey O French
March 2007, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Austin L Hughes, and Jeffrey O French
December 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Austin L Hughes, and Jeffrey O French
August 2015, Revue scientifique et technique (International Office of Epizootics),
Austin L Hughes, and Jeffrey O French
February 2010, Veterinary parasitology,
Austin L Hughes, and Jeffrey O French
September 2007, Trends in parasitology,
Austin L Hughes, and Jeffrey O French
December 2005, Annals of the New York Academy of Sciences,
Austin L Hughes, and Jeffrey O French
July 1994, Journal of molecular evolution,
Copied contents to your clipboard!