In vivo packaging of brome mosaic virus RNA3, but not RNAs 1 and 2, is dependent on a cis-acting 3' tRNA-like structure. 2007

Padmanaban Annamalai, and A L N Rao
University of California, Department of Plant Pathology, 3264 Webber Hall, Riverside, CA 925211-0122, USA.

The four encapsidated RNAs of brome mosaic virus (BMV; B1, B2, B3, and B4) contain a highly conserved 3' 200-nucleotide (nt) region encompassing the tRNA-like structure (TLS) which is required for packaging in vitro (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002). To validate these observations in vivo, we performed packaging assays using Agrobacterium-mediated transient expression of RNAs and coat protein (CP) (P. Annamalai and A. L. N. Rao, Virology 338:96-111, 2005). Coexpression of TLS-less constructs of B1 or B2 or B3 and CP mRNAs in Nicotiana benthamiana leaves resulted in packaging of TLS-less B1 and B2 but not B3, suggesting that packaging of B3 requires the TLS in cis. This conjecture was confirmed by the efficient packaging of a B3 chimera in which the viral TLS was replaced with a cellular tRNA(Tyr). When N. benthamiana leaves were infiltrated with a mixture of transformants containing wild-type B1 (wtB1) plus wtB2 plus a TLS-less B3 (wtB1+wtB2+TLS-lessB3), the 3' end of progeny B3 was restored by heterologous recombination with that of either B1 or B2. This intrinsic cis-requirement of TLS in promoting B3 packaging was further confirmed when a mixture containing agrotransformants of TLS-less B1+B2+B3 was supplemented with either wtB4 or a 3' 200-nt or 3' 336-nt untranslated region (UTR) of B3. Northern blot analysis followed by sequencing of B3 progeny revealed that replication of TLS-less B3, but not TLS-less B1 or B2, was fully restored due to recombination with TLS from transiently expressed wtB4 or the B3 3' UTR. Collectively, these observations suggested that the requirement of a cis-acting TLS is distinct for B3 compared with B1 or B2.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D017795 Bromovirus A genus of tripartite plant viruses in the family BROMOVIRIDAE. Transmission is by beetles. Brome mosaic virus is the type species. Brome mosaic virus,Cowpea chlorotic mottle virus,Brome mosaic viruses
D019065 Virus Assembly The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE. Viral Assembly,Assembly, Viral,Assembly, Virus
D020413 3' Untranslated Regions The sequence at the 3' end of messenger RNA that does not code for product. This region contains transcription and translation regulating sequences. 3'UTR,3' UTR,3' Untranslated Region,3' UTRs,3'UTRs,Region, 3' Untranslated,Regions, 3' Untranslated,UTR, 3',UTRs, 3',Untranslated Region, 3',Untranslated Regions, 3'

Related Publications

Padmanaban Annamalai, and A L N Rao
September 2003, Journal of virology,
Padmanaban Annamalai, and A L N Rao
September 2003, Journal of virology,
Padmanaban Annamalai, and A L N Rao
September 2011, Nucleic acids research,
Padmanaban Annamalai, and A L N Rao
April 2004, Journal of virology,
Padmanaban Annamalai, and A L N Rao
March 1998, Proceedings of the National Academy of Sciences of the United States of America,
Padmanaban Annamalai, and A L N Rao
July 1989, Proceedings of the National Academy of Sciences of the United States of America,
Padmanaban Annamalai, and A L N Rao
November 2008, The Journal of biological chemistry,
Padmanaban Annamalai, and A L N Rao
January 1976, Progress in nucleic acid research and molecular biology,
Copied contents to your clipboard!