Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. 1990

G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
Department of Experimental Haematology, Paterson Institute for Cancer Research, Christie Hospital and Holt Radium Institute, Manchester, UK.

The major effect of granulocyte colony-stimulating factor (G-CSF) is to induce neutrophilia in previously untreated animals or after chemotherapy or marrow transplantation in humans, primates and rodents. In addition, it has been reported that migration of committed progenitor cells to the blood occurs during G-CSF therapy. In this article, by using sex mismatched transplants and a molecular probe for Y-chromosome specific DNA sequences, we show that among the peripheral blood cells during G-CSF therapy are substantial numbers of primitive stem cells capable of (1) reconstituting the hematopoietic system in the long term, and (2) making a contribution to the lymphoid populations of the thymus, in radiation ablated recipients. These data suggest that blood from patients treated with G-CSF may provide a convenient source of the most primitive stem cells for autologous or allogeneic bone marrow transplantation.

UI MeSH Term Description Entries
D008297 Male Males
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D005260 Female Females
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016026 Bone Marrow Transplantation The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION. Bone Marrow Cell Transplantation,Grafting, Bone Marrow,Transplantation, Bone Marrow,Transplantation, Bone Marrow Cell,Bone Marrow Grafting
D016179 Granulocyte Colony-Stimulating Factor A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines. Colony-Stimulating Factor, Granulocyte,G-CSF,Myeloid Growth Factor,Colony Stimulating Factor, Granulocyte,Factor, Granulocyte Colony-Stimulating,Factor, Myeloid Growth,Granulocyte Colony Stimulating Factor,Growth Factor, Myeloid
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
March 1995, Blood,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
January 1996, Stem cells (Dayton, Ohio),
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
May 2002, Current opinion in hematology,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
September 2004, Haematologica,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
August 1993, [Rinsho ketsueki] The Japanese journal of clinical hematology,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
February 2001, Yonsei medical journal,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
January 2009, Journal of clinical apheresis,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
January 1996, Cancer chemotherapy and pharmacology,
G Molineux, and Z Pojda, and I N Hampson, and B I Lord, and T M Dexter
January 2008, Journal of clinical apheresis,
Copied contents to your clipboard!