Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. 2006

Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
Groupe d'Etude des Substances Végétales à Activités Biologiques, EA 3675, Université Victor-Segalen Bordeaux II, UFR Sciences Pharmaceutiques, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.

BACKGROUND Numerous epidemiological and animal studies have shown that consumption of red wine is related to reduced incidence of cardiovascular diseases and cancer. Trans-resveratrol (3, 5, 4'-trihydroxystilbene), a phenolic compound present in wine, has been reported to have a potential cancer chemopreventive activity. Moreover, it may exert a protective effect against atherogenesis through its antioxidant properties. Trans-piceid (3-ss glucoside of trans-resveratrol) is present to a greater extent than its aglycone in red wine, but hydrolysis of this glycosylated derivative can occur in small intestine and liver, which would enhance the amount of the biological active trans-resveratrol. OBJECTIVE The present study aimed to investigate the rate of transepithelial transport of trans-piceid using human intestinal Caco-2 cell monolayers and metabolism of this compound during its absorption across the small intestine. METHODS The transport of trans-piceid was evaluated in the human epithelial cell line Caco-2, which possesses enterocyte-like properties in vitro. For transepithelial experiments, confluent monolayers of Caco-2 cells were grown on Transwell inserts. For metabolic studies, we used both Caco-2 cells seeded on 6-well plates and rat small intestine cell-free extracts. RESULTS The time course of apical (AP) to basolateral (BL) transport of trans-piceid showed that the favorable apparent permeability coefficient (Papp) declined rapidly during the 6 h of the experiment. This observation could be correlated with the appearance of metabolites. After incubation of Caco-2 cells with trans-piceid, trans-resveratrol was detected on both AP and BL sides. By using protein extracts obtained from rat, we conclude that the Lactase Phlorizin Hydrolase (LPH) and Cytosolic-ss-Glucosidase (CBG) are involved in the hydrolysis of trans-piceid. Furthermore, we show that after deglycosylation, the resulting aglycone is metabolized in trans-resveratrol-3-O-ss-glucuronide and to a lesser extent in trans-resveratrol-4'-O-ss-glucuronide, and that UGT1A1 is mainly involved in this metabolism. CONCLUSIONS This study demonstrates that the transepithelial transport of trans-piceid occurs at a high rate and that the compound is deglycosylated in trans-resveratrol. There are two possible pathways by which trans-piceid is hydrolyzed in the intestine. The first is a cleavage by the CBG, after passing the brush-border membrane by SGLT1. The second is deglycosylation on the luminal side of the epithelium by the membrane-bound enzyme LPH, followed by passive diffusion of the released aglycone, which is further metabolized inside the cells into two glucuronoconjugates.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D010694 Lactase-Phlorizin Hydrolase A multifunctional protein that contains two enzyme domains. The first domain (EC 3.2.1.62) hydrolyzes glycosyl-N-acylsphingosine to a sugar and N-acylsphingosine. The second domain (EC 3.2.1.108) hydrolyzes LACTOSE and is found in the intestinal brush border membrane. Loss of activity for this enzyme in humans results in LACTOSE INTOLERANCE. Glycosylceramidase,Phloretin-Glucosidase,Phlorizin Hydrolase,Glycosyl Ceramidase,Lactase-Glycosylceramidase,Ceramidase, Glycosyl,Hydrolase, Lactase-Phlorizin,Hydrolase, Phlorizin,Lactase Glycosylceramidase,Lactase Phlorizin Hydrolase,Phloretin Glucosidase
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005960 Glucosides A GLYCOSIDE that is derived from GLUCOSE. Glucoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077185 Resveratrol A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. 3,4',5-Stilbenetriol,3,4',5-Trihydroxystilbene,3,5,4'-Trihydroxystilbene,Resveratrol, (Z)-,Resveratrol-3-sulfate,SRT 501,SRT-501,SRT501,cis-Resveratrol,trans-Resveratrol,trans-Resveratrol-3-O-sulfate,Resveratrol 3 sulfate,cis Resveratrol,trans Resveratrol,trans Resveratrol 3 O sulfate
D001617 beta-Glucosidase An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE. Cellobiases,Amygdalase,Cellobiase,Emulsion beta-D-Glucosidase,Gentiobiase,Emulsion beta D Glucosidase,beta Glucosidase,beta-D-Glucosidase, Emulsion

Related Publications

Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
March 1987, Pflugers Archiv : European journal of physiology,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
July 1978, Biochimica et biophysica acta,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
January 1994, The Journal of nutrition,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
January 2003, European journal of nutrition,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
October 1977, Polski tygodnik lekarski (Warsaw, Poland : 1960),
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
February 2005, Journal of agricultural and food chemistry,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
February 2010, Journal of agricultural and food chemistry,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
April 1998, Drug metabolism and disposition: the biological fate of chemicals,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
November 2006, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology,
Caroline Henry-Vitrac, and Alexis Desmoulière, and Delphine Girard, and Jean-Michel Mérillon, and Stéphanie Krisa
January 2012, PloS one,
Copied contents to your clipboard!