Effect of chemodenervation on the cerebral vascular and microvascular response to hypoxia. 1990

M Anwar, and I Kissen, and H R Weiss
Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635.

This study evaluated the effect of bilateral carotid chemodenervation on the cerebrovascular response to hypoxia in conscious rats. Cerebral blood flow was measured using 4-iodo[N-methyl-14C]antipyrine, and the total and perfused microvasculature was studied by injection of fluorescein isothiocyanate dextran and alkaline phosphatase staining. To maintain constant PCO2, hypoxia was achieved in chemoreceptor-intact rats by the use of 4% CO2-8% O2-88% N2 and in chemodenervated rats by the administration of 8% O2-92% N2. Blood gas and hemodynamic parameters were similar in the two groups of rats. Chemodenervation had no significant effect on either resting blood flow or the perfused microvasculature during normoxia. A significant increase in cerebral blood flow (from 71 +/- 3 to 138 +/- 9 ml/min/100 g in control and from 91 +/- 5 to 127 +/- 7 ml/min/100 g in chemodenervated rats) and in the percent of cerebral arterioles and capillaries perfused occurred in both hypoxic control and chemodenervated rats. In chemoreceptor-intact rats, the greatest increase in blood flow and in perfused microvasculature occurred in caudal structures (medulla and pons) in comparison with rostral structures (cortex, thalamus, and hypothalamus). In chemodenervated rats, a similar increase in blood flow and perfused microvasculature occurred in all brain regions, with no regional differences. Thus, chemodenervation did not affect the overall cerebral blood flow or the microvascular response to hypoxia; however, rostral-to-caudal regional differences in the hypoxic response were lost after chemodenervation.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D005260 Female Females
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

M Anwar, and I Kissen, and H R Weiss
November 1989, The American journal of physiology,
M Anwar, and I Kissen, and H R Weiss
May 1985, Respiration physiology,
M Anwar, and I Kissen, and H R Weiss
April 1969, American heart journal,
M Anwar, and I Kissen, and H R Weiss
December 2011, Aviation, space, and environmental medicine,
M Anwar, and I Kissen, and H R Weiss
October 1996, Journal of applied physiology (Bethesda, Md. : 1985),
M Anwar, and I Kissen, and H R Weiss
January 1979, Canadian Anaesthetists' Society journal,
M Anwar, and I Kissen, and H R Weiss
March 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
M Anwar, and I Kissen, and H R Weiss
January 1975, Bibliotheca anatomica,
M Anwar, and I Kissen, and H R Weiss
September 1994, Biochimica et biophysica acta,
Copied contents to your clipboard!