Poly(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. 1990

I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
Laboratory for Molecular Carcinogenesis, Sylvius Laboratories, University of Leiden, The Netherlands.

The highly unstable c-myc mRNA has been shown to be stabilized in cells treated with protein synthesis inhibitors. We have studied this phenomenon in an effort to gain more insight into the degradation pathway of this mRNA. Our results indicate that the stabilization of c-myc mRNA in the absence of translation can be fully explained by the inhibition of translation-dependent poly(A) tail shortening. This view is based on the following observations. First, the normally rapid shortening of the c-myc poly(A) tail was slowed down by a translation block. Second, c-myc messengers which carry a short poly(A) tail, as a result of prolonged actinomycin D or 3'-deoxyadenosine treatment, were not stabilized by the inhibition of translation. We propose that c-myc mRNA degradation proceeds in at least two steps. The first step is the shortening of long poly(A) tails. This step requires ongoing translation and thus is responsible for the delay in mRNA degradation observed in the presence of protein synthesis inhibitors. The second step involves rapid degradation of the body of the mRNA, possibly preceded by the removal of the short remainder of the poly(A) tail. This last step is independent of translation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA

Related Publications

I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
August 2008, RNA (New York, N.Y.),
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
January 1990, Molecular biology reports,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
January 1993, Cellular & molecular biology research,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
January 2024, Methods in molecular biology (Clifton, N.J.),
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
April 1988, Molecular and cellular biology,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
December 1995, Archives of biochemistry and biophysics,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
July 2012, Journal of dermatological science,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
May 1991, Nucleic acids research,
I A Laird-Offringa, and C L de Wit, and P Elfferich, and A J van der Eb
September 1989, Cell,
Copied contents to your clipboard!