Alcohol and GABA-benzodiazepine receptor function. 1990

M K Ticku
University of Texas Health Science Center, San Antonio 78284-7764.

gamma-Aminobutyric acid (GABA)A is a major inhibitory neurotransmitter in the mammalian CNS. GABAA ergic synapse is also an important site of action for a variety of centrally acting drugs, including benzodiazepines and barbiturates. Several lines of electrophysiological, behavioral, and biochemical studies implicate GABAA ergic synapse in the actions of alcohol. In electrophysiological studies, alcohol has been reported to enhance GABA-mediated responses in cortical neurons, spinal cord and substantia nigra, albeit, negative results have also been reported. In behavioral studies, GABAmimetics enhance alcohol's effects on motor coordination, while GABA antagonists have the opposite effect. In drug-combination studies, subeffective doses of alcohol, in combination with subeffective doses of other GABAmimetics, potentiate each other's effect in several seizure models. In functional studies, alcohol has been reported to potentiate GABA receptor-mediated 36Cl-flux in microsacs, neurosynaptosomes, and cultured spinal cord neurons at pharmacologically relevant concentrations. The potentiating effect of alcohol is blocked by GABA antagonists and the inverse agonists of the benzodiazepine receptor site. Taken together, these studies indicate that some of the central effects of alcohol are mediated via facilitation of GABAAergic transmission.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000437 Alcoholism A primary, chronic disease with genetic, psychosocial, and environmental factors influencing its development and manifestations. The disease is often progressive and fatal. It is characterized by impaired control over drinking, preoccupation with the drug alcohol, use of alcohol despite adverse consequences, and distortions in thinking, most notably denial. Each of these symptoms may be continuous or periodic. (Morse & Flavin for the Joint Commission of the National Council on Alcoholism and Drug Dependence and the American Society of Addiction Medicine to Study the Definition and Criteria for the Diagnosis of Alcoholism: in JAMA 1992;268:1012-4) Alcohol Abuse,Alcoholic Intoxication, Chronic,Ethanol Abuse,Alcohol Addiction,Alcohol Dependence,Alcohol Use Disorder,Abuse, Alcohol,Abuse, Ethanol,Addiction, Alcohol,Alcohol Use Disorders,Chronic Alcoholic Intoxication,Dependence, Alcohol,Intoxication, Chronic Alcoholic,Use Disorders, Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D001519 Behavior The observable response of a man or animal to a situation. Acceptance Process,Acceptance Processes,Behaviors,Process, Acceptance,Processes, Acceptance
D001569 Benzodiazepines A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring. Benzodiazepine,Benzodiazepine Compounds

Related Publications

M K Ticku
March 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M K Ticku
November 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M K Ticku
January 2005, The Journal of clinical psychiatry,
M K Ticku
July 1981, Journal of neurochemistry,
M K Ticku
January 1983, Progress in neuro-psychopharmacology & biological psychiatry,
M K Ticku
January 1986, Advances in biochemical psychopharmacology,
M K Ticku
January 2000, Journal of neural transmission (Vienna, Austria : 1996),
Copied contents to your clipboard!