Localization and requirement for Myosin II at the dorsal-ventral compartment boundary of the Drosophila wing. 2006

Robert J Major, and Kenneth D Irvine
Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.

As organisms develop, their tissues can become separated into distinct cell populations through the establishment of compartment boundaries. Compartment boundaries have been discovered in a wide variety of tissues, but in many cases the molecular mechanisms that separate cells remain poorly understood. In the Drosophila wing, a stripe of Notch activation maintains the dorsal-ventral compartment boundary, through a process that depends on the actin cytoskeleton. Here, we show that the dorsal-ventral boundary exhibits a distinct accumulation of Myosin II, and that this accumulation is regulated downstream of Notch signaling. Conversely, the dorsal-ventral boundary is depleted for the Par-3 homologue Bazooka. We further show that mutations in the Myosin heavy chain subunit encoded by zipper can impair dorsal-ventral compartmentalization without affecting anterior-posterior compartmentalization. These observations identify a distinct accumulation and requirement for Myosin activity in dorsal-ventral compartmentalization, and suggest a novel mechanism in which contractile tension along an F-actin cable at the compartment boundary contributes to compartmentalization.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014921 Wings, Animal Movable feathered or membranous paired appendages by means of which certain animals such as birds, bats, or insects are able to fly. Animal Wing,Animal Wings,Wing, Animal
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular
D051880 Receptors, Notch A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN REPEATS in their cytoplasmic domains. The cytoplasmic domains are released upon ligand binding and translocate to the CELL NUCLEUS, where they act as transcription factors. Notch Protein,Notch Receptor,Notch Receptors,Notch Proteins,Protein, Notch,Receptor, Notch
D018995 Myosin Heavy Chains The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity. Myosin Heavy Chain,Heavy Chain, Myosin,Heavy Chains, Myosin
D024462 Myosin Type II The subfamily of myosin proteins that are commonly found in muscle fibers. Myosin II is also involved a diverse array of cellular functions including cell division, transport within the GOLGI APPARATUS, and maintaining MICROVILLI structure. Myosin II
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

Robert J Major, and Kenneth D Irvine
April 2016, Journal of genetics and genomics = Yi chuan xue bao,
Robert J Major, and Kenneth D Irvine
January 1996, Development (Cambridge, England),
Robert J Major, and Kenneth D Irvine
January 2008, Mechanisms of development,
Robert J Major, and Kenneth D Irvine
September 1999, Nature,
Copied contents to your clipboard!