Metallic nanostructures were prepared through the alternate immersion of derivatized glass slides in solutions of gold nanoparticles (NPs) and a propanedithiol linker molecule. Nanostructures consisting of 1-17 depositions of gold NPs were synthesized, and these substrates were characterized using UV-vis spectroscopy and atomic force microscopy. Subsequently, the surface-enhanced Raman scattering (SERS) of oxazine 720 was obtained at two excitation wavelengths (632 and 785 nm) from all substrates. Maximum SERS enhancement was observed for 9 and 13 NP depositions for 632 and 785 nm excitations, respectively. The difference in the number of NP depositions required for maximum enhancement is attributed to different wavelengths which can excite distinct aggregate structures within the metallic substrate. Therefore, these NP-containing structures can be "tuned" to yield maximum SERS enhancement for the excitation source being used by varying the number of NP depositions.
| UI | MeSH Term | Description | Entries |
|---|