Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. 2006

Emily S Charlson, and John N Werner, and Rajeev Misra
School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.

YfgL together with NlpB, YfiO, and YaeT form a protein complex to facilitate the insertion of proteins into the outer membrane of Escherichia coli. Without YfgL, the levels of OmpA, OmpF, and LamB are significantly reduced, while OmpC levels are slightly reduced. In contrast, the level of TolC significantly increases in a yfgL mutant. When cells are depleted of YaeT or YfiO, levels of all outer membrane proteins examined, including OmpC and TolC, are severely reduced. Thus, while the assembly pathways of various nonlipoprotein outer membrane proteins may vary through the step involving YfgL, all assembly pathways in Escherichia coli converge at the step involving the YaeT/YfiO complex. The negative effect of yfgL mutation on outer membrane proteins may in part be due to elevated sigma E activity, which has been shown to downregulate the synthesis of various outer membrane proteins while upregulating the synthesis of periplasmic chaperones, foldases, and lipopolysaccharide. The data presented here suggest that the yfgL effect on outer membrane proteins also stems from a defective assembly apparatus, leading to aberrant outer membrane protein assembly, except for TolC, which assembles independent of YfgL. Consistent with this view, the simultaneous absence of YfgL and the major periplasmic protease DegP confers a synthetic lethal phenotype, presumably due to the toxic accumulation of unfolded outer membrane proteins. The results support the hypothesis that TolC and major outer membrane proteins compete for the YaeT/YfiO complex, since mutations that adversely affect synthesis or assembly of major outer membrane proteins lead to elevated TolC levels.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D018272 Porins Porins are protein molecules that were originally found in the outer membrane of GRAM-NEGATIVE BACTERIA and that form multi-meric channels for the passive DIFFUSION of WATER; IONS; or other small molecules. Porins are present in bacterial CELL WALLS, as well as in plant, fungal, mammalian and other vertebrate CELL MEMBRANES and MITOCHONDRIAL MEMBRANES. Pore Protein,Pore Proteins,Porin,Protein, Pore,Proteins, Pore

Related Publications

Emily S Charlson, and John N Werner, and Rajeev Misra
March 2005, Journal of bacteriology,
Emily S Charlson, and John N Werner, and Rajeev Misra
October 1990, Journal of bacteriology,
Emily S Charlson, and John N Werner, and Rajeev Misra
February 1974, FEBS letters,
Emily S Charlson, and John N Werner, and Rajeev Misra
August 1973, Archives of biochemistry and biophysics,
Emily S Charlson, and John N Werner, and Rajeev Misra
December 1996, FEMS immunology and medical microbiology,
Emily S Charlson, and John N Werner, and Rajeev Misra
January 2008, FEMS immunology and medical microbiology,
Emily S Charlson, and John N Werner, and Rajeev Misra
January 2004, The Journal of biological chemistry,
Emily S Charlson, and John N Werner, and Rajeev Misra
August 1977, Biochemical and biophysical research communications,
Emily S Charlson, and John N Werner, and Rajeev Misra
January 1982, Annales de microbiologie,
Emily S Charlson, and John N Werner, and Rajeev Misra
May 1977, Journal of biochemistry,
Copied contents to your clipboard!