Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain. 1991

K W Ryan, and E M Morgan, and A Portner
Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

Binding of Sendai virus P protein to viral nucleocapsids requires amino acids in two separate regions of P protein. Both required regions are near the carboxyl terminus, and they are separated by a region which is expendable for binding (K. W. Ryan and A. Portner, 1990, Virology 174, 515-521). To examine the topography of these regions in the folded P protein molecule we mapped the epitopes present in several undenatured P proteins with overlaping deletions near their carboxyl termini. The epitopes recognized by two monoclonal antibodies were each composed of both protein regions necessary for binding, indicating that these two regions are each required at some point during the folding of P protein. To determine if these protein regions interact directly in forming the nucleocapsid binding domain, we constructed a deleted P gene which encodes a protein comprising only these two regions with all other P protein sequences deleted. This protein was able to bind to nucleocapsids, demonstrating that these two regions alone are sufficient to form the nucleocapsid-binding domain. In addition, this protein formed the folded epitopes comprising the two nucleocapsid-binding regions, indicating that the two regions interact directly with each other to form a single folded structure. The involvement of this binding domain in viral mRNA synthesis was examined by testing the ability of each monoclonal antibody to inhibit the in vitro transcription activity of full-size P protein. Several antibodies to epitopes near the binding domain were found to be potent inhibitors of viral transcription, showing that these regions contribute to P protein's role in mRNA synthesis.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K W Ryan, and E M Morgan, and A Portner
April 1990, The Journal of general virology,
K W Ryan, and E M Morgan, and A Portner
January 1975, Archives of virology,
K W Ryan, and E M Morgan, and A Portner
January 1969, Journal of electron microscopy,
K W Ryan, and E M Morgan, and A Portner
November 1971, Japanese journal of microbiology,
K W Ryan, and E M Morgan, and A Portner
June 1999, The Journal of general virology,
Copied contents to your clipboard!