Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli. 1991

A Hizi, and R Tal, and S H Hughes
Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel.

We have constructed a plasmid that, when introduced into Escherichia coli, induces the synthesis of large quantities of a polypeptide with an apparent molecular weight of 68 kDa. The HIV-2 reverse transcriptase (RT) made in E. coli is soluble in bacterial extracts and possesses both RNA-dependent DNA polymerase and ribonuclease H (RNase H) activities typical of retroviral RTs. The HIV-2 RT expression clone was used to generate mutations in HIV-2 RT. There is a strong correlation between the effects of individual mutations on the DNA polymerase and RNase H activities. Mutations that profoundly affect the two catalytic functions are not clustered in any particular region of the polypeptide. Those few mutations that selectively affect either the RNase H or the DNA polymerase suggest that, like other retroviral RTs, the DNA polymerase is associated with the amino-terminal portion of HIV-2 RT and the RNase H with the carboxy-terminal portion. Genetically, the HIV-2 RT resembles the HIV-1 RT more closely than it resembles Moloney murine leukemia virus RT. The two catalytic functions of Moloney murine leukemia virus RT can be separately expressed in active form by molecular cloning; those of HIV-1 and HIV-2 RT cannot.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase

Related Publications

A Hizi, and R Tal, and S H Hughes
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
A Hizi, and R Tal, and S H Hughes
March 1994, Proceedings of the National Academy of Sciences of the United States of America,
A Hizi, and R Tal, and S H Hughes
July 1995, Nucleic acids research,
A Hizi, and R Tal, and S H Hughes
November 1992, Proceedings of the National Academy of Sciences of the United States of America,
A Hizi, and R Tal, and S H Hughes
December 1993, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!