Dihydropyridine-sensitive single calcium channels in airway smooth muscle cells. 1990

J F Worley, and M I Kotlikoff
Department of Pharmacology and Toxicology, West Virginia University Health Sciences Center, Morgantown 26506.

We have identified and characterized single voltage-dependent calcium channels in both acutely dissociated rat bronchial and cultured human tracheobronchial smooth muscle cells using the patch-clamp technique. In both cell types, on-cell membrane patches displayed unitary currents selective for barium ions and exhibited one conductance level (21-26 pS), and the open state probability was increased by membrane depolarization. Unitary barium currents were enhanced by the calcium channel selective agonist, BAY R 5417, and inhibited by the dihydropyridine calcium channel antagonist, nisoldipine (apparent inhibition constant less than 100 nM). Moreover, the degree of nisoldipine inhibition of the rat bronchial smooth muscle channels was increased with membrane depolarization in a manner consistent with the drug interacting with highest affinity to the inactivated channel state. In addition, the sensitivity to BAY R 5417 augmentation and nisoldipine inhibition of depolarization-induced tonic force of intact rat bronchial ring segments was in close agreement to the single channel results. Thus these data suggest that activation of voltage-dependent calcium channels can influence airway contraction and that dihydropyridines may be effective modulators of depolarization-induced increases in bronchial tone. We conclude that both rat and human airway smooth muscle cells have high-conductance voltage-dependent calcium channels that interact in a predictable manner with dihydropyridines and are similar to voltage-dependent calcium channels observed in other smooth muscle cells.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J F Worley, and M I Kotlikoff
March 1993, The American journal of physiology,
J F Worley, and M I Kotlikoff
February 1985, Biochemical and biophysical research communications,
J F Worley, and M I Kotlikoff
February 1995, The American journal of physiology,
J F Worley, and M I Kotlikoff
March 1993, The Journal of general physiology,
J F Worley, and M I Kotlikoff
March 1995, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J F Worley, and M I Kotlikoff
November 1998, American journal of respiratory and critical care medicine,
J F Worley, and M I Kotlikoff
August 1986, Proceedings of the National Academy of Sciences of the United States of America,
J F Worley, and M I Kotlikoff
March 1988, The Journal of biological chemistry,
J F Worley, and M I Kotlikoff
May 1999, The Journal of laboratory and clinical medicine,
J F Worley, and M I Kotlikoff
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!