Effects of FK506 on rat thymus: time-course analysis by immunoperoxidase technique and flow cytofluorometry. 1990

K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
Department of Urology, Yamaguchi University School of Medicine, Japan.

The effect of administration of FK506 at 1 mg/kg body weight for 14 days on rat lymphoid tissues, especially the thymus, and recovery after discontinuation of treatment, were investigated by the immunoperoxidase technique and flow cytofluorometry using monoclonal antibodies OX6, OX7, OX8, OX18 and W3/25, reactive with rat lymphocytes. Marked reduction of the thymic medulla upon treatment was clearly demonstrated by staining with OX18 and OX6. Changes produced by FK506 were also observed in the cortical area of the thymus, and were especially marked in the subcapsular area and around blood vessels. Eventually, the thymic cortex appeared patchy, this change being maximal 14 days after the start of administration. Obvious restitution of the thymic medulla was evident about 14 days after withdrawal of FK506. Flow cytometric analysis of the thymus showed that the percentages of cells labelled positively with OX7, OX8 and W3/25 were increased with FK506 treatment, and recovered to the normal level soon after withdrawal. Furthermore, the peak of fluorescence intensity of OX7+, OX8+ and W3/25+ cells showed a temporary shift to the right during FK506 treatment; however, the peak of fluorescence intensity of OX18+ cells showed a temporary shift to the left. Treatment with FK506 also produced a significant change in 3H-thymidine uptake by thymocyte. These results suggest that FK506 may inhibit the proliferation, maturation and differentiation of thymocytes. However, thymocytes prepared from FK506-treated rats and labelled with FITC behaved similarly to rat thymocytes in normal recipient rats. This suggests that during FK506 treatment thymocytes may retain their potential for peripheral mobilization.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody

Related Publications

K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
May 1988, Clinical and experimental immunology,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
July 1982, Clinical and experimental immunology,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
October 1990, The Tohoku journal of experimental medicine,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
July 1978, Cell and tissue kinetics,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
December 1974, Experimental cell research,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
August 1982, European journal of immunology,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
July 1983, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
January 2016, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
K Takai, and K Jojima, and J Sakatoku, and T Fukumoto
January 1986, Leukemia research,
Copied contents to your clipboard!