The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture. 2006

Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, 2400-Copenhagen, Denmark. jje@rheoscience.com

In an attempt to delineate the prefrontal cortex (PFC) in the Göttingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers were visualized using standard immunohistochemistry or evaluated in vivo using manganese (Mn2+) as an MRI paramagnetic tracer. The in vivo tract tracing turned out to be very sensitive with a high correspondence to the histological labelling. Tracers injected into the mediodorsal thalamus labelled the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Göttingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed that the Göttingen minipig PFC constitutes about 24% of the total neocortex volume and 10% of the total brain volume.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
July 2017, Brain structure & function,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
March 2019, Heliyon,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
November 2001, NeuroImage,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
May 2005, Experimental brain research,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
June 2002, Comparative medicine,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
December 2016, Toxicology letters,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
January 1997, Pharmacology & toxicology,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
September 1992, The Journal of comparative neurology,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
March 2001, Inhalation toxicology,
Jacob Jelsing, and Anders Hay-Schmidt, and Tim Dyrby, and Ralf Hemmingsen, and Harry B M Uylings, and Bente Pakkenberg
April 2016, Toxicologic pathology,
Copied contents to your clipboard!