Receptor binding, endocytosis, and mitogenesis of insulin-like growth factors I and II in fetal rat brain neurons. 1991

F C Nielsen, and E Wang, and S Gammeltoft
Department of Clinical Chemistry, Bispebjerg Hospital, Copenhagen, Denmark.

Cell surface binding, internalization, and biological effects of insulin-like growth factors (IGFs) I and II have been studied in primary neuronal cultures from developing rat brain (embryonic day 15). Two types of IGF binding sites are present on the cell surface. The IGF-I receptor alpha-subunit (Mr 125,000) binds IGF-I with a KD of 1 nM and IGF-II with 10 times lower affinity. The mannose-6-phosphate (Man-6-P)/IGF-II receptor (Mr 250,000) binds IGF-II with a KD of 0.5 nM and IGF-I with 100 times lower affinity. Surface-bound IGF-I and IGF-II are internalized by their respective receptors binding and internalization of IGF-II but not those of IGF-I. Neuronal synthesis of RNA and DNA is increased twofold by IGF-I with 10 times higher potency than IGF-II. Antibody 3637, which blocks receptor binding of IGF-II, has no effect on the DNA response to IGF-I or IGF-II. Double immunocytochemical staining with antibodies to bromodeoxyuridine and neurofilament shows that greater than 80% of the bromodeoxyuridine-positive cells become neurofilament positive. It is concluded that IGF-I and IGF-II bind to two receptors on the surface of neuronal precursor cells that mediate endocytosis and degradation of IGF-I and IGF-II. Proliferation of neuronal precursor cells is stimulated by IGF-I and IGF-II via activation of the IGF-I receptor.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D008360 Mannosephosphates Phosphoric acid esters of mannose.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

F C Nielsen, and E Wang, and S Gammeltoft
January 1992, Journal of neuroscience research,
F C Nielsen, and E Wang, and S Gammeltoft
January 1991, Pediatric research,
F C Nielsen, and E Wang, and S Gammeltoft
April 1987, Endocrinology,
F C Nielsen, and E Wang, and S Gammeltoft
July 1990, European journal of biochemistry,
Copied contents to your clipboard!