Mutations in the myelin proteolipid protein gene alter oligodendrocyte gene expression in jimpy and jimpymsd mice. 1991

W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
Mental Retardation Research Center, Neuropsychiatric Institute, UCLA Medical Center 90024.

The mouse myelin proteolipid protein (PLP) gene has been studied in normal and jimpymsd mice. Potential upstream regulatory regions of the normal gene have been cloned and mapped, but when these regions were studied in jimpymsd mice by Southern blots, no alterations were observed, relative to the normal gene. To assess whether the low ratio of PLP to DM20 proteins in this mutant reflected an altered PLP/DM20 ratio mRNAs, S1 nuclease analyses were undertaken, which demonstrated that at all ages studied in both jimpy and jimpymsd mice, PLP mRNA was elevated above DM20 mRNA. When exon 3 (the site of the alternative splice signal for DM20 mRNA) of the jimpymsd PLP gene was sequenced, no mutation was identified. The transcription of the PLP gene in normal and mutant animals was studied. The transcription rate increases in normal animals with development, and in very young jimpymsd or jimpy mice, the transcription rate of the PLP gene was close to that of age-matched normal animals. However, by 10 days of age, the transcription rate of this gene in both mutants was significantly below that of age-matched controls. The transcription rate of the myelin basic protein (MBP) gene was also reduced, indicating that expression of both genes is affected by this mutation. In contrast, the transcription rate of the glycerol phosphate dehydrogenase (GPDH) gene, an early marker of oligodendrocytes, is equal to or greater than normal in both mutants. We have confirmed an earlier report of a point mutation in exon 6 of the jimpymsd PLP gene, which converts an alanine to a valine.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009185 Myelin Proteins MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure. Myelin Protein,Protein, Myelin,Proteins, Myelin
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons

Related Publications

W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
February 1988, Journal of molecular biology,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
January 1986, Nature,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
November 1984, Developmental biology,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
July 1989, Journal of neurochemistry,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
December 1986, The EMBO journal,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
May 1990, The Biochemical journal,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
January 1987, Gene,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
April 1996, Neurochemical research,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
December 1987, Journal of neurochemistry,
W B Macklin, and M V Gardinier, and Z O Obeso, and K D King, and P A Wight
March 1992, Neuroscience letters,
Copied contents to your clipboard!