Capsaicin inhibits catecholamine secretion and synthesis by blocking Na+ and Ca2+ influx through a vanilloid receptor-independent pathway in bovine adrenal medullary cells. 2006

Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
Department of Hospital Pharmacy, University of Occupational and Environmental Health, Kitakyushu, Japan.

We report here the effects of capsaicin, a flavoring ingredient in the hot pepper Capsicum family, on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Capsaicin inhibited catecholamine secretion (IC(50)=9.5, 11.8, and 62 microM) stimulated by carbachol, an agonist of the nicotinic acetylcholine receptor, by veratridine, an activator of voltage-dependent Na(+) channels, and by high K(+), an activator of voltage-dependent Ca(2+) channels, respectively. Capsaicin also suppressed carbachol-induced (22)Na(+) influx (IC(50)=5.0 microM) and (45)Ca(2+) influx (IC(50)=24.4 muM), veratridine-induced (22)Na(+) influx (IC(50)=2.4 microM) and (45)Ca(2+) influx (IC(50)=1.1 microM), and high K(+)-induced (45)Ca(2+) influx (IC(50)=5.8 microM). The reduction in catecholamine secretion caused by capsaicin was not overcome by increasing the concentration of carbachol. Furthermore, capsazepine (10 microM), a competitive antagonist for the transient receptor potential vanilloid 1, and ruthenium red (30 microM), a nonselective cation channel antagonist, did not block the inhibition by capsaicin of catecholamine secretion. Capsaicin also suppressed both basal and carbachol-stimulated (14)C-catecholamine synthesis (IC(50)=10.6 and 26.4 microM, respectively) from [(14)C] tyrosine but not from L: -3, 4-dihydroxyphenyl [3-(14)C] alanine ([(14)C] DOPA) as well as tyrosine hydroxylase activity (IC(50)=8.4 and 39.0 microM, respectively). The present findings suggest that capsaicin inhibits catecholamine secretion and synthesis via suppression of Na(+) and Ca(2+) influx through a vanilloid receptor-independent pathway.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004295 Dihydroxyphenylalanine A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific. Dopa,3,4-Dihydroxyphenylalanine,3-Hydroxy-DL-tyrosine,Dihydroxyphenylalanine Hydrochloride, (2:1),beta-Hydroxytyrosine,3 Hydroxy DL tyrosine,3,4 Dihydroxyphenylalanine,beta Hydroxytyrosine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin

Related Publications

Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
October 2008, The Journal of pharmacology and experimental therapeutics,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
June 1986, European journal of pharmacology,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
January 1985, General pharmacology,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
July 2003, Biochemical pharmacology,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
January 1999, The Journal of pharmacology and experimental therapeutics,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
December 1991, Japanese journal of pharmacology,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
October 1990, Cell calcium,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
May 1995, The Journal of pharmacology and experimental therapeutics,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
February 1983, Journal of neurochemistry,
Kojiro Takahashi, and Yumiko Toyohira, and Susumu Ueno, and Masato Tsutsui, and Nobuyuki Yanagihara
May 1992, Biological psychiatry,
Copied contents to your clipboard!