Landmarks in understanding the central nervous control of the cardiovascular system. 2007

John H Coote
Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK. j.h.coote@bham.ac.uk

In this Paton Lecture I have tried to trace the key experiments that have developed ideas on how the brain regulates the cardiovascular system. It is a personal view and inevitably, owing to constraints on space and time, I have not been able to cover areas such as the nucleus tractus solitarius and cardiac vagal neurones, although I acknowledge that some may consider the story is incomplete without them. Starting with the crucial discovery of vasomotor nerves and 'vasomotor tone', the patterns of activity in sympathetic nerves which led to the important idea of central oscillating networks of neurones are described. I discuss how this knowledge has informed current controversies on the origin of vasomotor activity in presympathetic neurones in the ventral medulla, which identify intrinsic pacemaker activity or synaptic input from multiple oscillators as prime mechanisms. I present an emerging view that the role of other regions of the brain, in particular supramedullary sites, has been underplayed. These regions are pivotal for the non-uniform distribution of cardiac output that is unique to each reflex and behavioural state. I discuss the most recent evidence for 'central command' neurones that offers a plausible explanation for how these patterns of sympathetic activity are achieved. Finally, I stress the importance of these current ideas to the understanding of pathological changes in sympathetic activity in cardiovascular diseases such as hypertension or congestive heart failure.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D010953 Plasma Volume Volume of PLASMA in the circulation. It is usually measured by INDICATOR DILUTION TECHNIQUES. Blood Plasma Volume,Blood Plasma Volumes,Plasma Volumes,Volume, Blood Plasma,Volume, Plasma,Volumes, Blood Plasma,Volumes, Plasma
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002318 Cardiovascular Diseases Pathological conditions involving the CARDIOVASCULAR SYSTEM including the HEART; the BLOOD VESSELS; or the PERICARDIUM. Adverse Cardiac Event,Cardiac Events,Major Adverse Cardiac Events,Adverse Cardiac Events,Cardiac Event,Cardiac Event, Adverse,Cardiac Events, Adverse,Cardiovascular Disease,Disease, Cardiovascular,Event, Cardiac

Related Publications

John H Coote
January 1981, Clinical and experimental hypertension,
John H Coote
January 1982, Annual review of pharmacology and toxicology,
John H Coote
December 1972, The Journal of pharmacy and pharmacology,
John H Coote
April 1960, Physiological reviews. Supplement,
John H Coote
January 1994, Advances in pharmacology (San Diego, Calif.),
John H Coote
August 1971, The Australian journal of experimental biology and medical science,
John H Coote
October 1982, The Journal of experimental biology,
John H Coote
January 2019, Intensive care medicine,
John H Coote
February 2019, Biochemical Society transactions,
Copied contents to your clipboard!