Effects of phase feeding of protein on performance, blood urea nitrogen concentration, manure nitrogen:phosphorus ratio, and carcass characteristics of feedlot cattle. 2006

J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
Texas Agricultural Experiment Station, Amarillo 79106, USA.

Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.

UI MeSH Term Description Entries
D008297 Male Males
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D001806 Blood Urea Nitrogen The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) BUN,Nitrogen, Blood Urea,Urea Nitrogen, Blood
D001823 Body Composition The relative amounts of various components in the body, such as percentage of body fat. Body Compositions,Composition, Body,Compositions, Body
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
December 2006, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
November 1996, Tropical animal health and production,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
February 1998, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
June 2009, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
April 2012, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
November 1996, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
November 2007, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
September 2004, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
March 2010, Journal of animal science,
J T Vasconcelos, and L W Greene, and N A Cole, and M S Brown, and F T McCollum, and L O Tedeschi
December 2001, Journal of animal science,
Copied contents to your clipboard!