Renal versus hindquarter hemodynamic responses to vasopressin in conscious rats. 1990

L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana.

Experiments were performed on conscious rats to (a) compare the responsiveness of the renal and hindquarter vascular beds to infusions of exogenous arginine vasopressin (AVP), and (b) determine whether either bed demonstrates V2-vasopressinergic vasodilation when the vasoconstrictor properties of AVP are blocked. Rats were chronically instrumented with pulsed Doppler flow probes on either the left renal artery or the distal abdominal aorta as well as with femoral arterial and venous catheters. One series of experiments examined the vascular responses of these two beds to exogenous AVP infused intravenously (i.v.) at 0.2, 2.0, or 5.0 ng/min. The lowest infusion rate was associated with no detectable changes in mean arterial blood pressure (MAP), heart rate (HR), renal or hindquarter blood flow (RBF or HQBF), or vascular resistance in these beds. In contrast, the higher infusion rates caused a marked increase in MAP, a decrease in HR, and a reduction in HQBF; RBF was unaffected, however. A second series of experiments tested for the presence of a V2-vasodilatory influence during infusion of AVP at 5 ng/min by selectively blocking V1-vasopressinergic receptors or both V1- and V2-receptor types. Little evidence for V2-mediated vasodilation was found in either vascular bed, however. We conclude that although the renal vasculature appears relatively insensitive to exogenous AVP, this insensitivity probably is not due to vasodilation mediated by activation of V2-receptors.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin

Related Publications

L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
June 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
April 1990, The American journal of physiology,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
October 1988, The American journal of physiology,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
March 1998, Journal of cardiovascular pharmacology,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
January 1989, The American journal of physiology,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
July 1985, The American journal of physiology,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
July 1991, Journal of the autonomic nervous system,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
January 1996, Hypertension (Dallas, Tex. : 1979),
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
April 1990, The Journal of endocrinology,
L M Harrison-Bernard, and B L Brizzee, and G G Clifton, and B R Walker
March 1987, The American journal of physiology,
Copied contents to your clipboard!