Effects of chronic treatment with various neuromuscular blocking agents on the number and distribution of acetylcholine receptors in the rat diaphragm. 1975

C C Chang, and S T Chuang, and M C Huang

1. Acetylcholine receptors in the end-plate and non-end-plate areas of the rat diaphragm, after treating the animal with hemicholinium-3, alpha- or beta-bungarotoxin in vivo, were studied by their specific binding of labelled alpha-bungarotoxin. 2. Subcutaneous injection of maximum tolerable doses of hemicholinium-3 (50 mug/kg) twice daily for 7 days increased the number of extrajunctional receptors along the whole length of muscle fibre, the approximate density of receptor on muscle membrane being increased from 6/mum2 in normal diaphragm to 38/mum2. Junctional receptors were also increased in number from 2-2 x 10(7) to 2-8 x 10(7) per end-plate. 3. Five days after denervation, there were approximately 153/mum2 extrajunctional receptors and the number of receptors on the end-plate was increased by 220%. 4. Intrathoracic injection of beta-bungarotoxin (50 mug/kg) also increased the density of extrajunctional receptors to approximately 104/mum2, and the number of end-plate receptors by 140% in 5 days. The neuromuscular block was extensive and prolonged. 5. [3H]Diacetyl alpha-bungarotoxin (150 mug/kg) injected into thoracic cavity caused complete neuromuscular blockade for 12 hr. At 24 hr, the synaptic transmission was restored in 80% of the junctions with less than 10% end-plate receptors freed, whereas the safety factor for transmission in normal diaphragm was 3-5. Extrajunctional receptors appeared to increase within 24 hr. This increase continued despite the restoration of neuromuscular transmission, and the receptor density at 5 days was approximately 5l/mum2. The number of junctional receptors, however, was not increased. Repeated injection of the toxin gave the same result. 6. It is concluded that the numbers of junctional and extrajunctional acetylcholine receptors are regulated in different ways, and the possible role of acetylcholine is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D005260 Female Females

Related Publications

C C Chang, and S T Chuang, and M C Huang
April 1972, Science (New York, N.Y.),
C C Chang, and S T Chuang, and M C Huang
August 2004, European journal of pharmacology,
C C Chang, and S T Chuang, and M C Huang
June 1981, Archives internationales de pharmacodynamie et de therapie,
C C Chang, and S T Chuang, and M C Huang
November 1971, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
C C Chang, and S T Chuang, and M C Huang
February 1986, Masui. The Japanese journal of anesthesiology,
C C Chang, and S T Chuang, and M C Huang
March 1962, The Journal of pharmacy and pharmacology,
C C Chang, and S T Chuang, and M C Huang
January 1979, Indian journal of physiology and pharmacology,
C C Chang, and S T Chuang, and M C Huang
February 1977, The Journal of pharmacology and experimental therapeutics,
C C Chang, and S T Chuang, and M C Huang
January 1991, Physiological research,
Copied contents to your clipboard!