Influenza A-specific, HLA-A2.1-restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein. 1991

V H Engelhard, and E Lacy, and J P Ridge
Department of Microbiology, University of Virginia, Charlottesville 22908.

Previous studies have indicated that in transgenic mice expressing human class I MHC molecules, it is difficult to demonstrate a significant CTL response to a viral Ag in the context of the transgenic molecule. In this paper, a procedure is reported for the isolation of influenza-specific murine CTL restricted by the human class I molecule HLA-A2.1. The principal specificity of such CTL is for a fragment of the influenza M1 protein that has been previously shown to be immunodominant for human HLA-A2.1-restricted CTL. CTL of this specificity were also established through the use of peptide-pulsed rather than virus-infected stimulators. The dependence of murine CTL recognition upon peptide length and HLA-A2 structure was established to be similar to that previously reported for human CTL. However, the fine specificity of CTL maintained on virus-infected stimulators was somewhat different from that of CTL maintained with M1 peptide. This suggests that differences in surface density or peptide structure between peptide-pulsed and virus-infected stimulators may result in the outgrowth of T cells with different receptor structures. The immunodominance of the M1 peptide determinant in both mice and humans suggests that species-specific differences in TCR structure, Ag-processing systems, and self-tolerance are of less importance than limitations on the ability of antigenic peptides to bind to appropriate class I molecules. These results thus establish the utility of the transgenic system for the identification of human class I MHC-restricted T cell epitopes.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins

Related Publications

V H Engelhard, and E Lacy, and J P Ridge
May 1991, Journal of immunological methods,
V H Engelhard, and E Lacy, and J P Ridge
February 2006, Acta biochimica et biophysica Sinica,
V H Engelhard, and E Lacy, and J P Ridge
June 1993, European journal of immunology,
V H Engelhard, and E Lacy, and J P Ridge
February 2003, The Journal of general virology,
V H Engelhard, and E Lacy, and J P Ridge
August 1980, The Journal of experimental medicine,
V H Engelhard, and E Lacy, and J P Ridge
March 1997, The Journal of experimental medicine,
V H Engelhard, and E Lacy, and J P Ridge
April 1995, International immunology,
Copied contents to your clipboard!