Brain tryptophan hydroxylation in the portacaval shunted rat: a hypothesis for the regulation of serotonin turnover in vivo. 1991

F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
Department of Clinical Pharmacology, Lund University, Sweden.

Regional and whole-brain tryptophan-hydroxylating activity and serotonin turnover were investigated in portacaval shunted (PCS) rats using an in vivo decarboxylase inhibition assay. To saturate tryptophan hydroxylation with amino acid substrate, rats were administered a high dose of tryptophan 1 h prior to analysis of brain tryptophan, 5-hydroxytryptophan, serotonin, and 5-hydroxyindoleacetic acid. The analysis revealed, as expected, higher brain concentrations of tryptophan and 5-hydroxyindoles and increased serotonin synthesis rate in PCS rats as compared with shamoperated controls. Saturating levels of brain tryptophan were achieved in both PCS and sham animals after exogenous tryptophan administration. The tryptophan load resulted in increased brain serotonin turnover in all regions and in whole brain compared with rats that did not receive a tryptophan load. Tryptophan-loaded PCS rats showed increased brain serotonin turnover compared with tryptophan-loaded sham rats. Regionally, this supranormal tryptophan-hydroxylating activity was most pronounced in the mesencephalon-pons followed by the cortex. It is concluded that, at least in the PCS rat, brain tryptophan hydroxylation is an inducible process. Since it is known that brain tissue from PCS rats undergoes a redox shift toward a reduced state and that the essential cofactor tetrahydrobiopterin is active in tryptophan hydroxylation only when present in its reduced form, it is hypothesized that this is the reason for the supranormal tryptophan-hydroxylating activity displayed by the PCS rats. The hypothesis further suggests that alterations in tetrahydrobiopterin availability may serve as a mechanism by which brain tryptophan hydroxylation, and therefore serotonin turnover, can be regulated with high sensitivity in vivo.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D011167 Portacaval Shunt, Surgical Surgical portasystemic shunt between the portal vein and inferior vena cava. Eck Fistula,Portacaval Anastomosis,Portacaval Shunt,Shunt, Surgical Portacaval,Surgical Portacaval Shunt,Anastomoses, Portacaval,Anastomosis, Portacaval,Fistula, Eck,Portacaval Anastomoses,Portacaval Shunts,Portacaval Shunts, Surgical,Shunt, Portacaval,Shunts, Portacaval,Shunts, Surgical Portacaval,Surgical Portacaval Shunts
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D006916 5-Hydroxytryptophan The immediate precursor in the biosynthesis of SEROTONIN from tryptophan. It is used as an antiepileptic and antidepressant. 5-HTP,Hydroxytryptophan,Oxitriptan,Oxytryptophan,Tryptophan, 5-Hydroxy-,5 Hydroxytryptophan,5-Hydroxy- Tryptophan,Tryptophan, 5 Hydroxy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
July 1990, Journal of neurochemistry,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
January 1968, Journal of neurochemistry,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
March 1965, Life sciences (1962),
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
January 1974, Advances in biochemical psychopharmacology,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
August 2011, Liver international : official journal of the International Association for the Study of the Liver,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
March 2005, Journal of hepatology,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
June 1989, Neurochemical research,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
March 2002, Life sciences,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
July 1982, Journal of neuroscience methods,
F Bengtsson, and M Bugge, and K H Johansen, and R F Butterworth
January 1968, Advances in pharmacology,
Copied contents to your clipboard!