Effect of haloperidol on transient outward potassium current in rat ventricular myocytes. 2006

Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
Department of Physiology, Faculty of Medicine, Masaryk University, Komenského nám. 2, 662 43 Brno, Czech Republic. bebarova.ifmu@centrum.cz

Although sigma ligand haloperidol is known to affect repolarization in heart, its effect on potassium currents in cardiomyocytes has not yet been studied. We analyzed the effect of 1 micromol/l haloperidol on transient outward K(+) current (I(to)) in enzymatically isolated rat right ventricular cardiomyocytes using the whole-cell patch-clamp technique at room temperature. Haloperidol induced a decrease of amplitude and an acceleration of apparent inactivation of I(to), both in a voltage-independent manner. The averaged inhibition of I(to), evaluated as a change of its time integral, was 23.0+/-3.2% at stimulation frequency of 0.1 Hz. As a consequence of slow recovery of I(to) from the haloperidol-induced block (time constant 1482+/-783 ms), a cumulation of the block up to about 40% appeared at 3.3 Hz. We conclude that haloperidol causes a voltage-independent block of I(to) that cumulates at higher stimulation frequencies. Based on the computer reconstruction of experimental data, a block of I(to)-channels in both open and open-inactivated states appears to be likely mechanism of haloperidol-induced inhibition of I(to).

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
January 2000, American journal of physiology. Heart and circulatory physiology,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
February 1997, Journal of molecular and cellular cardiology,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
July 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
July 2002, Acta pharmacologica Sinica,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
February 1997, Sheng li xue bao : [Acta physiologica Sinica],
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
January 2008, Cardiology,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
April 2002, American journal of physiology. Heart and circulatory physiology,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
January 1989, Pflugers Archiv : European journal of physiology,
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
June 2002, Journal of molecular medicine (Berlin, Germany),
Markéta Bébarová, and Peter Matejovic, and Michal Pásek, and Marie Nováková
February 2000, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!