Energy partitioning schemes. 2006

I Mayer
Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525, Budapest, Hungary.

The paper gives an overview, generalization and systematization of the different energy decomposition schemes we have devised in the last few years by using both the 3-D analysis (the atoms are represented by different parts of the physical space) and the Hilbert space analysis in terms of the basis orbitals assigned to the individual atoms. The so called "atomic decomposition of identity" provides us the most general formalism for analyzing different physical quantities in terms of individual atoms or pairs of atoms. (The "atomic decomposition of identity" means that we present the identity operator as a sum of operators assigned to the individual atoms.) By proper definitions of the atomic operators, both Hilbert-space and the different 3-D decomposition schemes can be treated on an equal footing. Several different but closely related energy decomposition schemes have been proposed for the Hilbert space analysis. They differ by exact or approximate treatment of the three- and four-center integrals and by considering the kinetic energy as a part of the atomic Hamiltonian or as having genuine two-center components, too. (Also, some finite basis correction terms may be treated in different manners.) The exact schemes are obtained by using the "atomic decomposition of identity". In the approximate schemes a projective integral approximation is also introduced, thus the energy components contain only one- and two-center integrals. The diatomic energy contributions have also been decomposed into terms of different physical nature (electrostatic, exchange etc.) The 3-D analysis may be performed either in terms of disjunct atomic domains, as in the case of the AIM formalism, or by using the so called "fuzzy atoms" which do not have sharp boundaries but exhibit a continuous transition from one to another. The different schemes give different numbers, but each is capable of reflecting the most important intramolecular interactions as well as the secondary ones--e.g. intramolecular interactions of type C-H[...]O.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008432 Mathematical Computing Computer-assisted interpretation and analysis of various mathematical functions related to a particular problem. Statistical Computing,Computing, Statistical,Mathematic Computing,Statistical Programs, Computer Based,Computing, Mathematic,Computing, Mathematical,Computings, Mathematic,Computings, Mathematical,Computings, Statistical,Mathematic Computings,Mathematical Computings,Statistical Computings
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011789 Quantum Theory The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E Quantum Theories,Theories, Quantum,Theory, Quantum
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D055672 Static Electricity The accumulation of an electric charge on a object Electrostatic,Electrostatics,Static Charge,Charge, Static,Charges, Static,Electricity, Static,Static Charges

Related Publications

I Mayer
February 2005, The Journal of chemical physics,
I Mayer
July 2018, Molecular biology and evolution,
I Mayer
June 2000, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity,
I Mayer
March 2015, Journal of plant physiology,
I Mayer
July 2011, The Journal of chemical physics,
I Mayer
January 2011, Chemical communications (Cambridge, England),
Copied contents to your clipboard!