Animal models and human neuropsychiatric disorders. 2007

Gene S Fisch
Yeshiva University, 875 West End Ave. Apt 6B, New York, NY 10025, USA. gsfisch@hotmail.com

Humans have long distinguished themselves from other living organisms. Therefore, to make use of animal models for neuropsychiatric disorders, it is important to acknowledge what has changed historically. Darwin argued that there was continuity in mind between humans and nonhuman species, and animal experimental psychologists and others have debated the existence of consciousness and mentality in animals ever since. Those trained in the associationist tradition sought to eliminate the concept of mind in favor of an empiricial, behavioral approach; others trained in the introspectionist tradition sought to include mental abilities as an integral part of comparative animal psychology. The waning of behaviorism and ascendance of cognitive psychology in the mid-twentieth century renewed interest in the notion of consciousness and mind in nonhuman organisms, particularly as they related to learning impairment and neurobehavioral disorders. Moreover, advances in molecular genetics and technology facilitated development of genetically modified mouse strains that could be used to examine cognitive deficits and psychopathology. However, genetic modifications to individual genes that produce behavioral dysfunction in the mouse have not always provided clear results. In part, this is likely due to the influence of genes in addition to the targeted gene, sometimes resulting in paradoxical effects. I also examine other issues created by the use of nonhuman models of human disorders, including: language, the effect of background genetic strains, genetic-environmental interactions, and the problems associated with the complex genetics needed to produce similarly complex behavioral phenotypes.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001523 Mental Disorders Psychiatric illness or diseases manifested by breakdowns in the adaptational process expressed primarily as abnormalities of thought, feeling, and behavior producing either distress or impairment of function. Mental Illness,Psychiatric Diseases,Psychiatric Disorders,Psychiatric Illness,Behavior Disorders,Diagnosis, Psychiatric,Mental Disorders, Severe,Psychiatric Diagnosis,Illness, Mental,Mental Disorder,Mental Disorder, Severe,Mental Illnesses,Psychiatric Disease,Psychiatric Disorder,Psychiatric Illnesses,Severe Mental Disorder,Severe Mental Disorders
D013694 Temperament Predisposition to react to one's environment in a certain way; usually refers to mood changes. Temperaments
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

Gene S Fisch
January 2011, Annual review of clinical psychology,
Gene S Fisch
October 2010, Nature neuroscience,
Gene S Fisch
January 2014, ILAR journal,
Gene S Fisch
January 2023, Advances in experimental medicine and biology,
Gene S Fisch
January 2011, Current topics in behavioral neurosciences,
Gene S Fisch
January 2023, Frontiers in behavioral neuroscience,
Gene S Fisch
August 2017, Current opinion in neurobiology,
Gene S Fisch
December 2021, The British journal of nutrition,
Copied contents to your clipboard!