Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of nigrostriatal dopamine release: evidence for direct regulatory mechanisms. 1990

M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
Department of Pharmacology, Karolinska Institute, Stockholm, Sweden.

The striatonigral pathway contains several neurotransmitters which may regulate the activity of the nigrostriatal dopamine projection in the rat. This was investigated by measuring extracellular dopamine levels in the striatum, using microdialysis, after injections of GABA (300 nmol/0.2 microliters), dynorphin A (0.5 nmol/0.2 microliters), substance P (0.07 mnol/0.2 microliters) or neurokinin A (0.09 nmol/0.2 microliters) into the ipsilateral substantia nigra, pars reticulata (SNR). Intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. In rats with ibotenic acid lesions (2.5 micrograms/0.5 microliters) in the SNR, intranigral injections of GABA or dynorphin A inhibited, while intranigral injections of substance P or neurokinin A stimulated dopamine levels in the ipsilateral striatum. These responses were not significantly different than those in unlesioned rats. Analysis of the intranigral lesion with in situ hybridization revealed a heavy loss of glutamic acid decarboxylase mRNA expression in the SNR and a significant loss of tyrosine hydroxylase (TH) mRNA expression in the SNC. Immunohistochemical analysis revealed a disappearance of TH-Like immunoreactivity (LI) im dendrites in the SNR, a considerable loss of TH-LI cell bodies in the SNC and a restricted loss of neuropeptide K-LI in the SNR around the tip of the injection cannula. Furthermore, lesioned rats rotated ipsilateral to the lesion after apomorphine (1 mg/kg, s.c.), indicating that the basal ganglia output mediated via the SNR GABA neurons was impaired on the lesioned side. Analysis of the striatum revealed that a dense TH-LI fiber network could still be seen on the lesioned side. Furthermore, basal and amphetamine stimulated extracellular dopamine levels in the striatum on the lesioned side were not significantly depleted. This indicates that the ascending nigrostriatal dopamine projection was functionally intact on the lesioned side. These findings indicate that intranigral GABA, dynorphin A, substance P and neurokinin A modulation of ipsilateral striatal dopamine release is mediated via direct action on the nigrostriatal projection. Thus, it is suggested that the striatonigral pathway, which contains GABA, dynorphin, substance P and neurokinin A, exerts a direct regulatory effect on the activity of the nigrostriatal dopamine projection.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D003956 Dialysis A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Dialyses
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)

Related Publications

M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
June 1988, Neuroscience,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
January 1990, Brain research,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
November 1986, Neuropharmacology,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
November 1977, Brain research,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
January 1982, Ciba Foundation symposium,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
January 1986, Peptides,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
December 2004, Journal of neuroimmunology,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
June 1981, Neuropharmacology,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
May 1986, The Journal of biological chemistry,
M S Reid, and M Herrera-Marschitz, and T Hökfelt, and N Lindefors, and H Persson, and U Ungerstedt
February 1988, Agents and actions,
Copied contents to your clipboard!