Co-expression of steroid receptors (estrogen receptor alpha and/or progesterone receptors) and Her-2/neu: Clinical implications. 2006

Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
Laboratory of Oncology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CONICET), Casilla de Correo 855, 5500 Mendoza, Argentina. dciocca@lab.cricyt.edu.ar

The response of breast cancer patients to endocrine therapy is guided by the expression of two steroid hormone receptors (HR): estrogen receptor alpha (ERalpha) and/or progesterone receptors (PR). In most laboratories the expression of these predictive markers is studied by immunohistochemistry (IHC) in the breast cancer biopsy samples. Another molecular marker that is being increasingly examined in breast cancer is the oncoprotein Her-2/neu, whose expression/amplification predicts the response to anti-Her-2/neu immunotherapy. The co-expression of HR with that of Her-2/neu is infrequent (most reports agree on this), however, there are some conflicting reports about the clinical implications in term of response to endocrine therapy in the patients that co-express HR and Her-2/neu. We have examined these molecular markers for a number of years in our tumor bank, in this dissertation we will present the method and cut-off to study these markers, the correlations between their expression, and the follow-up of the patients that received tamoxifen-based endocrine therapy, alone or following chemotherapy. We confirmed that the co-expression of HR with Her-2/neu is infrequent, and that these patients presented both a shorter disease free survival and overall survival. Our results will be compared with others related recently published. For example, the aromatase inhibitor anastrozole appears to be an effective endocrine treatment in HR+ patients, irrespective of the Her-2/neu status. We will present data on the molecular mechanisms that could explain the relatively poor outcome of these patients. Heregulin has been found to be a potent inducer of heat shock factor 1 (HSF1) activity and of heat shock protein (Hsp) synthesis in breast cancer cells and HSF1 activation plays a role in the tumorigenic changes induced by heregulin, heregulin exerts its tumorigenic changes through the cell surface tyrosine kinase receptors c-erbB-3 and c-erbB-4 which are able to form dimers with the "ligandless" Her-2/neu. We found that HSF1 associates with metastasis associated protein 1 (MTA1) on the promoters of genes as well as other molecules involved in gene repression (HDAC1, HDAC2) in a manner that is enhanced by either heregulin exposure or heat shock. ERs, although promoting the growth of breast cancer cells are less associated with invasion/metastasis and ER-induced gene expression is involve in this effect. Heregulin can overcome the protective effects of ER and at least a component of this appears to be due to MTA1 repression of ERE dependent transcription, HSF1 and MTA1 cooperate in gene repression. The co-expression of HSF1 and MTA1 was confirmed by IHC in human breast cancer biopsy samples.

UI MeSH Term Description Entries
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013629 Tamoxifen One of the SELECTIVE ESTROGEN RECEPTOR MODULATORS with tissue-specific activities. Tamoxifen acts as an anti-estrogen (inhibiting agent) in the mammary tissue, but as an estrogen (stimulating agent) in cholesterol metabolism, bone density, and cell proliferation in the ENDOMETRIUM. ICI-46,474,ICI-46474,ICI-47699,Nolvadex,Novaldex,Soltamox,Tamoxifen Citrate,Tomaxithen,Zitazonium,Citrate, Tamoxifen,ICI 46,474,ICI 46474,ICI 47699,ICI46,474,ICI46474,ICI47699
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D047628 Estrogen Receptor alpha One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA. ERalpha,Estradiol Receptor alpha,Estrogen Receptor 1,Estrogen Receptors alpha,Receptor alpha, Estrogen,Receptor alpha, Estradiol,alpha, Estradiol Receptor
D018719 Receptor, ErbB-2 A cell surface protein-tyrosine kinase receptor that is overexpressed in a variety of ADENOCARCINOMAS. It has extensive homology to and heterodimerizes with the EGF RECEPTOR, the ERBB-3 RECEPTOR, and the ERBB-4 RECEPTOR. Activation of the erbB-2 receptor occurs through heterodimer formation with a ligand-bound erbB receptor family member. HER-2 Proto-Oncogene Protein,Proto-Oncogene Protein HER-2,Proto-Oncogene Protein p185(neu),c-erbB-2 Protein,erbB-2 Proto-Oncogene Protein,erbB-2 Receptor Protein-Tyrosine Kinase,neu Proto-Oncogene Protein,Antigens, CD340,CD340 Antigen,Erb-b2 Receptor Tyrosine Kinases,Metastatic Lymph Node Gene 19 Protein,Neu Receptor,Oncogene Protein HER-2,Proto-Oncogene Proteins c-erbB-2,Proto-oncogene Protein Neu,Receptor, Neu,Receptors, erbB-2,Tyrosine Kinase-type Cell Surface Receptor HER2,p185(c-neu),p185erbB2 Protein,CD340 Antigens,Erb b2 Receptor Tyrosine Kinases,ErbB-2 Receptor,HER 2 Proto Oncogene Protein,Oncogene Protein HER 2,Proto Oncogene Protein HER 2,Proto Oncogene Proteins c erbB 2,Proto-Oncogene Protein, HER-2,Proto-Oncogene Protein, erbB-2,Proto-Oncogene Protein, neu,Tyrosine Kinase type Cell Surface Receptor HER2,c erbB 2 Protein,erbB 2 Proto Oncogene Protein,erbB 2 Receptor Protein Tyrosine Kinase,erbB-2 Receptors,neu Proto Oncogene Protein
D018931 Antineoplastic Agents, Hormonal Antineoplastic agents that are used to treat hormone-sensitive tumors. Hormone-sensitive tumors may be hormone-dependent, hormone-responsive, or both. A hormone-dependent tumor regresses on removal of the hormonal stimulus, by surgery or pharmacological block. Hormone-responsive tumors may regress when pharmacologic amounts of hormones are administered regardless of whether previous signs of hormone sensitivity were observed. The major hormone-responsive cancers include carcinomas of the breast, prostate, and endometrium; lymphomas; and certain leukemias. (From AMA Drug Evaluations Annual 1994, p2079) Hormonal Antineoplastic Agents,Antineoplastic Drugs, Hormonal,Antineoplastic Hormonal Agents,Antineoplastic Hormonal Drugs,Antineoplastics, Hormonal,Hormonal Agents, Antineoplastic,Hormonal Antineoplastic Drugs,Hormonal Antineoplastics,Agents, Antineoplastic Hormonal,Drugs, Antineoplastic Hormonal,Hormonal Drugs, Antineoplastic

Related Publications

Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
November 2009, JPMA. The Journal of the Pakistan Medical Association,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
January 2010, Journal of Bangladesh College of Physicians & Surgeons,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
June 2013, Histology and histopathology,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
June 2003, Bulletin of experimental biology and medicine,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
April 1993, Cancer,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
October 1993, Cancer,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
October 2004, Oncology reports,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
December 2001, Applied immunohistochemistry & molecular morphology : AIMM,
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
January 2019, Clinical pathology (Thousand Oaks, Ventura County, Calif.),
Daniel R Ciocca, and Francisco E Gago, and Mariel A Fanelli, and Stuart K Calderwood
April 2005, Journal of cancer research and clinical oncology,
Copied contents to your clipboard!