Stimulation by cGMP of apical Na channels and cation channels in toad urinary bladder. 1991

S Das, and M Garepapaghi, and L G Palmer
Department of Physiology, Cornell University Medical College, New York, New York 10021.

The effects of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) on apical membrane cation conductances in the toad urinary bladder were investigated. 8-BrcGMP (1 mM) added to the serosal solution increased the amiloride-sensitive short-circuit current (INa) after a delay of 5 min to a steady-state value 1.8 times that of controls achieved after 30 min. Similar effects were seen when the bladders were bathed on the serosal side with a normal NaCl Ringer solution and with a high-K sucrose solution to depolarize the basolateral membrane. Under the latter conditions, the amiloride-sensitive transepithelial conductance increased in parallel with the short-circuit current, indicating stimulation of apical membrane Na channels. The threshold concentration for observing the stimulation of INa was 100 microM, 10-100 times larger than the concentration of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) required to elicit an increase in INa. Currents through an outwardly rectifying Ca-sensitive cation conductance (Iout) were also increased by 1.8-fold relative to controls. This stimulatory effect occurred after a delay of 15 min and reached maximal levels 90-120 min after addition of the nucleotide. The effects of cGMP on INa were not additive with those of 8-BrcAMP or with antidiuretic hormone, an agent known to act by increasing cAMP within the cell. Addition of 1 mM 3-isobutyl-1-methylxanthine to the serosal side of the bladders stimulated INa by 1.3-fold and Iout by 2.4-fold. In both cases, subsequent addition of cGMP produced no further activation of either conductance.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

S Das, and M Garepapaghi, and L G Palmer
February 1986, The American journal of physiology,
S Das, and M Garepapaghi, and L G Palmer
April 1991, Pflugers Archiv : European journal of physiology,
S Das, and M Garepapaghi, and L G Palmer
June 1982, Nature,
S Das, and M Garepapaghi, and L G Palmer
January 1984, The Journal of membrane biology,
S Das, and M Garepapaghi, and L G Palmer
October 1987, Pflugers Archiv : European journal of physiology,
S Das, and M Garepapaghi, and L G Palmer
April 1994, The American journal of physiology,
S Das, and M Garepapaghi, and L G Palmer
January 1985, The Journal of membrane biology,
S Das, and M Garepapaghi, and L G Palmer
January 1982, The Journal of membrane biology,
S Das, and M Garepapaghi, and L G Palmer
November 1976, Biochimica et biophysica acta,
Copied contents to your clipboard!