Isolation and functional reconstitution of a 38-kDa chloride channel protein from bovine tracheal membranes. 1991

S Ran, and D J Benos
Department of Physiology and Biophysics, University of Alabama, Birmingham 35294.

Secretion of chloride ions via apically located anion-selective channels in epithelia regulates fluid formation and cytosolic Cl- homeostasis. In order to understand the biochemical basis of Cl- channel function, we attempted to isolate this transporter from bovine tracheal apical membranes. Initially, peripheral polypeptides were removed from apically enriched vesicles by washing with alkaline buffer (pH 10.8) containing 2 mM CHAPS. The resulting pellet contained 50-60% of the original protein and displayed 2-fold enhanced Cl- channel activity compared to untreated vesicles. The pellet was treated with Triton X-100, and the solubilized proteins were separated on the cationic exchanger CM-cellufine. Washing the resin with a pH 8.0-8.3 buffer eluted a fraction with enriched Cl- channel activity. This fraction contained less than 5% of the total solubilized protein. A subsequent separation was performed using the anionic exchanger AM-cellufine. The highest activity was found in the fractions eluted by 80-120 mM KCl. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed a major 38,000-Da protein band. This band was electroeluted from the gel under nondenaturing and nonreducing conditions and reconstituted into phosphatidylcholine liposomes. KCl-loaded vesicles containing the purified 38-kDa protein transported up to 5 nmol of 125I-/mg of protein/5 min. This value was 15-fold higher than the uptake measured in vesicles reconstituted with total solubilized membrane proteins and 4-fold higher compared to the CM-cellufine-enriched fraction. The observed 125I- uptake was 90% inhibited by 100 microM 4,4-bis(isothiocyano)-2,2'-stilbenedisulfonate or 10 microM valinomycin. In summary, we have developed a biochemical protocol for the isolation of a 38 kDa protein mediating potential-dependent and 4,4-bis(isothiocyano)-2,2'-stilbenedisulfonate-sensitive Cl- channel activity.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014132 Trachea The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi. Tracheas
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

S Ran, and D J Benos
November 1996, The American journal of physiology,
S Ran, and D J Benos
March 2002, American journal of physiology. Cell physiology,
S Ran, and D J Benos
November 1995, The Journal of physiology,
S Ran, and D J Benos
October 1992, The American journal of physiology,
S Ran, and D J Benos
November 2013, Proceedings of the National Academy of Sciences of the United States of America,
S Ran, and D J Benos
January 1988, Comparative biochemistry and physiology. A, Comparative physiology,
S Ran, and D J Benos
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
S Ran, and D J Benos
August 1994, The Journal of biological chemistry,
S Ran, and D J Benos
November 1986, The American journal of physiology,
Copied contents to your clipboard!