Separate K+ and Cl- transport pathways are activated for regulatory volume decrease in jejunal villus cells. 1991

R J MacLeod, and J R Hamilton
Department of Pediatrics, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada.

We assessed ion transport mechanisms operative during regulatory volume decrease (RVD) in jejunal villus enterocytes, isolated in suspension from guinea pig jejunum and examined with electronic cell sizing. Immediately after reduction of osmolarity (153 mosmol/kg medium) enterocytes swelled, but within 5 min they shrank by 50%. This RVD, which was complete by 20 min, was unaffected by Li+ substitution for Na+ or by Na(+)-free (N-methyl-D-glucose, NMDG+) medium. Passive loss of K+ is required for RVD because both the magnitude and direction of RVD changed when external [K+] varied. Increasing K+ permeability with gramicidin (0.5 microM) accelerated RVD in NMDG+ medium (10.0 +/- 0.8 vs. 6.2 +/- 0.4% min-1, P less than 0.01) suggesting that K+ loss is rate limiting for RVD. Inhibition of K(+)- and Ca2(+)-activated K+ conductance with Ba2+ (5 mM, P less than 0.005), quinine (100 microM, P less than 0.005), or apamin (1 microM, P less than 0.005) prevented RVD. Inhibition of Cl- conductance with 9-anthracenecarboxylic acid (100 microM, P less than 0.005) or dipyridamole (75 microM, P less than 0.005) also prevented RVD. In isotonic HCO3(-)-buffered medium, the addition of gramicidin to cells generated conditions in which anion permeability was rate limiting for cell swelling. This swelling was inhibited 97% by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In K(+)-free, HCO3(-)-buffered medium containing DIDS and gramicidin hypotonic swelling resulted in continued (secondary) swelling (rel vol 1.19 +/- 0.01 vs. 1.25 +/- 0.02, P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011803 Quinine An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. Biquinate,Legatrim,Myoquin,Quinamm,Quinbisan,Quinbisul,Quindan,Quinimax,Quinine Bisulfate,Quinine Hydrochloride,Quinine Lafran,Quinine Sulfate,Quinine Sulphate,Quinine-Odan,Quinoctal,Quinson,Quinsul,Strema,Surquina,Bisulfate, Quinine,Hydrochloride, Quinine,Sulfate, Quinine,Sulphate, Quinine
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion

Related Publications

R J MacLeod, and J R Hamilton
January 1986, The Journal of membrane biology,
R J MacLeod, and J R Hamilton
September 1999, The American journal of physiology,
R J MacLeod, and J R Hamilton
March 1993, The Journal of physiology,
R J MacLeod, and J R Hamilton
April 1995, The American journal of physiology,
R J MacLeod, and J R Hamilton
November 1993, The American journal of physiology,
R J MacLeod, and J R Hamilton
July 1993, European journal of pharmacology,
R J MacLeod, and J R Hamilton
March 1995, The American journal of physiology,
R J MacLeod, and J R Hamilton
December 2001, American journal of physiology. Cell physiology,
R J MacLeod, and J R Hamilton
January 2006, The Journal of membrane biology,
Copied contents to your clipboard!