Gene expression profiling of monocyte-derived macrophages following infection with Mycobacterium avium subspecies avium and Mycobacterium avium subspecies paratuberculosis. 2006

Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
Center for Animal Functional Genomics and Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA.

Mycobacterium avium subspecies paratuberculosis (MAP) and Mycobacterium avium subspecies avium (MAA) represent two closely related intracellular bacteria with vastly different associated pathologies. MAA can cause severe respiratory infections in immune compromised humans but is nonpathogenic in ruminants and is more readily controlled by the bovine immune system than MAP. MAP causes a fatal wasting syndrome in ruminants, typified by granulomatous enteritis localized in the small intestine. MAP has also been cited as a potential cause of human Crohn's disease. We used a bovine immune-specific microarray (BOTL-5) to compare the response of mature bovine monocyte-derived macrophages (MDM cells) to MAP and MAA. Statistical analysis of microarray data revealed 21 genes not appreciably expressed in resting MDM cells that were activated following infection with either MAA or MAP. Further analysis revealed 144 genes differentially expressed in MDM cells following infection with MAA and 99 genes differentially expressed following infection with MAP. Of these genes, 37 were affected by both types of mycobacteria, with three being affected in opposite directions. Over 41% of the differentially expressed genes in MAA and MAP infected MDM cells were members of, regulated by, or regulators of the MAPK pathways. Expression of selected genes was validated by quantitative real-time reverse transcriptase PCR and in several key genes (i.e., IL-2 receptor, tissue inhibitor of matrix metalloproteinases-1, and Fas-ligand) MAA was found to be a stronger activating factor than MAP. These gene expression patterns were correlated with prolonged activation of p38 MAPK and ERK1/2 by MAA, relative to MAP.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009162 Mycobacterium avium A bacterium causing tuberculosis in domestic fowl and other birds. In pigs, it may cause localized and sometimes disseminated disease. The organism occurs occasionally in sheep and cattle. It should be distinguished from the M. avium complex, which infects primarily humans.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016927 Mycobacterium avium subsp. paratuberculosis A subspecies of gram-positive, aerobic bacteria. It is the etiologic agent of Johne's disease (PARATUBERCULOSIS), a chronic GASTROENTERITIS in RUMINANTS. Mycobacterium paratuberculosis,Mycobacterium avium paratuberculosis,Mycobacterium avium subspecies paratuberculosis
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse
D020411 Oligonucleotide Array Sequence Analysis Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING. DNA Microarrays,Gene Expression Microarray Analysis,Oligonucleotide Arrays,cDNA Microarrays,DNA Arrays,DNA Chips,DNA Microchips,Gene Chips,Oligodeoxyribonucleotide Array Sequence Analysis,Oligonucleotide Microarrays,Sequence Analysis, Oligonucleotide Array,cDNA Arrays,Array, DNA,Array, Oligonucleotide,Array, cDNA,Arrays, DNA,Arrays, Oligonucleotide,Arrays, cDNA,Chip, DNA,Chip, Gene,Chips, DNA,Chips, Gene,DNA Array,DNA Chip,DNA Microarray,DNA Microchip,Gene Chip,Microarray, DNA,Microarray, Oligonucleotide,Microarray, cDNA,Microarrays, DNA,Microarrays, Oligonucleotide,Microarrays, cDNA,Microchip, DNA,Microchips, DNA,Oligonucleotide Array,Oligonucleotide Microarray,cDNA Array,cDNA Microarray
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays
D020935 MAP Kinase Signaling System An intracellular signaling system involving the mitogen-activated protein kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade. MAP Kinase Cascade,MAP Kinase Module,MAP Kinase Signaling Cascade,MAP Kinase Signaling Pathway,MAP Kinase Signaling Pathways,ERK Pathway,ERK Signal Tranduction Pathway,ERK1 and ERK2 Pathway,ERK1-2 Pathway,JNK Pathway,JNK Signaling Pathway,MAP Kinase Modules,MAP Kinase Signaling Cascades,MEK-ERK Pathway,p38 Kinase Pathway,p38 Kinase Signaling Pathway,Cascade, MAP Kinase,ERK Pathways,ERK1 2 Pathway,ERK1-2 Pathways,JNK Pathways,JNK Signaling Pathways,Kinase Cascade, MAP,Kinase Pathway, p38,Kinase Pathways, p38,MAP Kinase Cascades,MEK ERK Pathway,MEK-ERK Pathways,Module, MAP Kinase,Pathway, ERK,Pathway, ERK1-2,Pathway, JNK,Pathway, JNK Signaling,Pathway, MEK-ERK,Pathway, p38 Kinase,Pathways, ERK,Pathways, ERK1-2,Pathways, JNK,Pathways, JNK Signaling,Pathways, MEK-ERK,Pathways, p38 Kinase,Signaling Pathway, JNK,Signaling Pathways, JNK,p38 Kinase Pathways

Related Publications

Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
January 2020, Journal of microbiological methods,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
June 2013, Developmental and comparative immunology,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
May 2010, Briefings in functional genomics,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
October 2008, Microbes and infection,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
July 2014, Veterinary immunology and immunopathology,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
March 2012, Veterinary research,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
April 2007, Veterinary immunology and immunopathology,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
August 2006, Immunology and cell biology,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
January 2002, BMC microbiology,
Judith T Murphy, and Sandra Sommer, and Edward A Kabara, and Nitin Verman, and Michael A Kuelbs, and Peter Saama, and Robert Halgren, and Paul M Coussens
December 2007, Veterinary immunology and immunopathology,
Copied contents to your clipboard!