Cellular mechanisms of suppressive interactions between somatosensory responses in vivo. 2007

Michael J Higley, and Diego Contreras
Department of Neuroscience, University of Pennsylvania, School of Medicine, 215 Stemmler Hall, Philadelphia, PA 19104, USA.

The neural integration of afferent inputs evoked by spatiotemporally distributed sensory stimuli is a critical step in the formation of coherent and continuous perceptual representations. Integration mechanisms in various systems include linear and nonlinear summation of sensory responses. One well-known example in the rat barrel system is the suppressive interaction between responses to the consecutive deflection of neighboring whiskers. The mechanism underlying cross-whisker suppression has long been postulated to rely on intracortical postsynaptic inhibition, although this hypothesis has been challenged by recent reports. Here we show, using intracellular and extracellular recordings in vivo, that cross-whisker suppression occurs in the absence of cortical activity. Instead, suppression arises from local circuit operations at multiple levels of the subcortical afferent pathway and is amplified by the nonlinear transformation of synaptic input into spike output in both the thalamus and cortex. Because these cellular processes are common to neural circuits subserving visual and auditory modalities, we propose that the suppressive mechanisms elucidated here are a general property of thalamocortical sensory systems.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Michael J Higley, and Diego Contreras
January 1983, Advances in experimental medicine and biology,
Michael J Higley, and Diego Contreras
April 2014, Chemistry & biology,
Michael J Higley, and Diego Contreras
December 1983, The Journal of experimental medicine,
Michael J Higley, and Diego Contreras
June 2000, Current biology : CB,
Michael J Higley, and Diego Contreras
October 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Michael J Higley, and Diego Contreras
October 1979, Seminars in hematology,
Michael J Higley, and Diego Contreras
January 1992, Cerebral cortex (New York, N.Y. : 1991),
Michael J Higley, and Diego Contreras
January 1990, Perception & psychophysics,
Michael J Higley, and Diego Contreras
January 2013, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Michael J Higley, and Diego Contreras
January 2015, Handbook of experimental pharmacology,
Copied contents to your clipboard!