Endothelial nitric oxide synthase-dependent tyrosine nitration of prostacyclin synthase in diabetes in vivo. 2006

Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
BSEB 325, Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.

There is evidence that reactive nitrogen species are implicated in diabetic vascular complications, but their sources and targets remain largely unidentified. In the present study, we aimed to study the roles of endothelial nitric oxide synthase (eNOS) in diabetes. Exposure of isolated bovine coronary arteries to high glucose (30 mmol/l d-glucose) but not to osmotic control mannitol (30 mmol/l) switched angiotensin II-stimulated prostacyclin (PGI(2))-dependent relaxation into a persistent vasoconstriction that was sensitive to either indomethacin, a cyclooxygenase inhibitor, or SQ29548, a selective thromboxane receptor antagonist. In parallel, high glucose, but not mannitol, significantly increased superoxide and 3-nitrotyrosine in PGI(2) synthase (PGIS). Concurrent administration of polyethylene-glycolated superoxide dismutase (SOD), l-nitroarginine methyl ester, or sepiapterin not only reversed the effects of high glucose on both angiotensin II-induced relaxation and PGI(2) release but also abolished high-glucose-enhanced PGIS nitration, as well as its association with eNOS. Furthermore, diabetes significantly suppressed PGIS activity in parallel with increased superoxide and PGIS nitration in the aortas of diabetic C57BL6 mice but had less effect in diabetic mice either lacking eNOS or overexpressing human SOD (hSOD(+/+)), suggesting an eNOS-dependent PGIS nitration in vivo. We conclude that diabetes increases PGIS nitration in vivo, likely via dysfunctional eNOS.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006943 Hyperglycemia Abnormally high BLOOD GLUCOSE level. Postprandial Hyperglycemia,Hyperglycemia, Postprandial,Hyperglycemias,Hyperglycemias, Postprandial,Postprandial Hyperglycemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
October 2005, Circulation,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
February 2020, The Journal of biological chemistry,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
January 2007, Prostaglandins & other lipid mediators,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
January 2008, European journal of mass spectrometry (Chichester, England),
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
March 2012, Fertility and sterility,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
December 2011, The American journal of pathology,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
May 1998, International journal of molecular medicine,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
March 2004, Proceedings of the National Academy of Sciences of the United States of America,
Hong Nie, and Ji-Liang Wu, and Miao Zhang, and Jian Xu, and Ming-Hui Zou
May 1999, Drug metabolism reviews,
Copied contents to your clipboard!