Orbital magnetic resonance imaging of extraocular muscles in chronic progressive external ophthalmoplegia: specific diagnostic findings. 2006

Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
Jules Stein Eye Institute, Los Angeles, California 90095-7002, USA.

BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) is characterized by slowly progressive bilateral ophthalmoplegia and blepharoptosis. Molecular diagnosis is problematic because sporadic mitochondrial DNA deletions can be causative. We sought findings using magnetic resonance imaging (MRI) that might support the diagnosis of CPEO. METHODS Two men (ages 31 and 47 years) and 3 women (ages 40-49 years) with CPEO and symptom durations of 8 months to 28 years underwent high-resolution (2-mm slice thickness, 312 micron pixels), surface coil, T1-weighted orbital MRI in coronal planes. Images were analyzed quantitatively to determine extraocular muscle (EOM) sizes and were compared with 10 age- and gender-matched normal volunteers, one subject with myasthenia gravis, and with 30 subjects having EOM paralysis caused by oculomotor, trochlear,0 and abducens neuropathies. RESULTS EOM function was clinically diminished in CPEO, most markedly for the superior rectus (SR) and levator muscles. All EOMs in CPEO exhibited unusual qualitative T1 MRI signal abnormalities. Unlike the profound EOM atrophy typical of neurogenic paralysis, anterior volumes of medial rectus, lateral rectus, and inferior rectus muscles in CPEO were not smaller than normal (p>0.003). Anterior volumes of the SR muscle-levator complex and superior oblique were significantly reduced (p<0.003). Denervated EOMs exhibited statistically significant volume reduction when compared with normal and CPEO groups. Volume of the SR muscle-levator complex was the same in subjects with CPEO and oculomotor palsies. CONCLUSIONS CPEO is associated with minimal EOM volume reduction despite clinically severe weakness. This combination of findings may be specific for CPEO and could resolve the diagnostic dilemma in difficult cases.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009157 Myasthenia Gravis A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009915 Orbit Bony cavity that holds the eyeball and its associated tissues and appendages. Eye Socket,Eye Sockets,Orbits,Socket, Eye,Sockets, Eye
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
January 1998, AJNR. American journal of neuroradiology,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
April 2010, Ultrastructural pathology,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
October 1979, Annals of neurology,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
October 2000, Archives of ophthalmology (Chicago, Ill. : 1960),
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
January 1974, No shinkei geka. Neurological surgery,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
October 2006, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
July 2005, The British journal of ophthalmology,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
March 2005, Eye (London, England),
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
January 1974, Neurologia i neurochirurgia polska,
Maria Carolina Ortube, and Rahul Bhola, and Joseph L Demer
November 2016, Journal of the Formosan Medical Association = Taiwan yi zhi,
Copied contents to your clipboard!