Substitutions at methionine 295 of Archaeoglobus fulgidus ribulose-1,5-bisphosphate carboxylase/oxygenase affect oxygen binding and CO2/O2 specificity. 2007

Nathaniel E Kreel, and F Robert Tabita
Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, Ohio State University, Columbus, Ohio 43210-1292, USA.

Archaeoglobus fulgidus RbcL2, a form III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), exhibits unique properties not found in other well studied form I and II Rubiscos, such as optimal activity from 83 to 93 degrees C and an extremely high kcat value (23 s-1). More interestingly, this protein is unusual in that exposure or assay in the presence of oxygen and high levels of CO2 resulted in substantial loss (85-90%) of activity compared with assays performed under strictly anaerobic conditions. Kinetic studies indicated that A. fulgidus RbcL2 possesses an unusually high affinity for oxygen (Ki=5 microM); O2 is a competitive inhibitor with respect to CO2, yet the high affinity for O2 presumably accounts for the inability of high levels of CO2 to prevent inhibition. Comparative bioinformatic analyses of available archaeal Rubisco sequences were conducted to provide clues as to why the RbcL2 protein might possess such a high affinity for oxygen. These analyses suggested the potential importance of several unique residues, as did additional analyses within the context of available form I-III Rubisco structures. One residue unique to archaeal proteins (Met-295) was of particular interest because of its proximity to known active-site residues. Recombinant M295D A. fulgidus Rubisco was less sensitive to oxygen compared with the wild-type enzyme. This residue, along with other potential changes in conserved residues of form III Rubiscos, may provide an understanding as to how Rubisco may have evolved to function in the presence of air.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012273 Ribulose-Bisphosphate Carboxylase A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration. Carboxydismutase,Ribulose Biphosphate Carboxylase-Oxygenase,Ribulose Diphosphate Carboxylase,Ribulosebiphosphate Carboxylase,Rubisco,1,5-Biphosphate Carboxylase-Oxygenase,Ribulose Biphosphate Carboxylase,Ribulose Bisphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase-Oxygenase,Ribulose-1,5-Bisphosphate Carboxylase Small-Subunit,Ribulose-Bisphosphate Carboxylase Large Subunit,Ribulose-Bisphosphate Carboxylase Small Subunit,Rubisco Small Subunit,1,5 Biphosphate Carboxylase Oxygenase,Biphosphate Carboxylase-Oxygenase, Ribulose,Carboxylase Small-Subunit, Ribulose-1,5-Bisphosphate,Carboxylase, Ribulose Bisphosphate,Carboxylase, Ribulose Diphosphate,Carboxylase, Ribulose-1,5-Biphosphate,Carboxylase, Ribulose-Bisphosphate,Carboxylase, Ribulosebiphosphate,Carboxylase-Oxygenase, 1,5-Biphosphate,Carboxylase-Oxygenase, Ribulose Biphosphate,Carboxylase-Oxygenase, Ribulose-1,5-Biphosphate,Diphosphate Carboxylase, Ribulose,Ribulose 1,5 Biphosphate Carboxylase,Ribulose 1,5 Biphosphate Carboxylase Oxygenase,Ribulose 1,5 Bisphosphate Carboxylase Small Subunit,Ribulose Biphosphate Carboxylase Oxygenase,Ribulose Bisphosphate Carboxylase Large Subunit,Ribulose Bisphosphate Carboxylase Small Subunit,Small Subunit, Rubisco,Small-Subunit, Ribulose-1,5-Bisphosphate Carboxylase
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

Nathaniel E Kreel, and F Robert Tabita
January 1983, Annual review of biochemistry,
Nathaniel E Kreel, and F Robert Tabita
July 1993, Protein science : a publication of the Protein Society,
Nathaniel E Kreel, and F Robert Tabita
September 2020, Proceedings of the National Academy of Sciences of the United States of America,
Nathaniel E Kreel, and F Robert Tabita
July 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Nathaniel E Kreel, and F Robert Tabita
December 2005, Protein engineering, design & selection : PEDS,
Nathaniel E Kreel, and F Robert Tabita
December 2000, Proceedings of the National Academy of Sciences of the United States of America,
Nathaniel E Kreel, and F Robert Tabita
April 1992, The Journal of biological chemistry,
Nathaniel E Kreel, and F Robert Tabita
October 1978, Biochemical and biophysical research communications,
Nathaniel E Kreel, and F Robert Tabita
February 1992, Photosynthesis research,
Copied contents to your clipboard!