Cellular mechanisms of bradykinin-induced hyperpolarization in renal epitheloid MDCK-cells. 1991

F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
Institute for Physiology, University of Innsbruck, Austria.

Previous studies have demonstrated that bradykinin hyperpolarizes the cell membrane of subconfluent MDCK cells by increase of the potassium conductance. The present study has been performed to elucidate the intracellular mechanisms involved. To this end, the effects of bradykinin on the potential difference across the cell membrane (PD), on formation of inositol phosphates, and on intracellular calcium concentration (Cai) have been analyzed in cells without or with pretreatment with pertussis toxin or 12-O-tetradecanoylphorbol 13-acetate diester (TPA). In untreated cells, bradykinin leads to a transient increase of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate, increase of Cai, activation of potassium channels and hyperpolarization of the cell membrane. The effects of bradykinin on PD and Cai are still present in the absence of extracellular calcium. In cells pretreated with pertussis toxin the effect of bradykinin on inositol trisphosphate formation is almost abolished but bradykinin still leads to a transient increase of Cai and PD in the presence and absence of extracellular calcium. In cells pretreated with TPA the bradykinin-induced increase of inositol trisphosphate formation is blunted, the bradykinin-induced increase of Cai abolished, but the bradykinin-induced hyperpolarization still present. The observations indicate that bradykinin increases Cai in part by phorbol ester and pertussis toxin sensitive activation of phospholipase C. In addition, bradykinin is capable of enhancing Cai by utilizing pertussis toxin insensitive mechanisms. Furthermore, bradykinin is able to transiently enhance the potassium conductance without a general increase of intracellular calcium.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
May 1991, Kidney international,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
May 1991, The American journal of physiology,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
June 1997, Canadian journal of physiology and pharmacology,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
October 1986, Biochemical and biophysical research communications,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
July 1985, Biochemical and biophysical research communications,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
April 1995, The Journal of laboratory and clinical medicine,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
March 2000, Life sciences,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
October 1996, The American journal of physiology,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
June 1989, The American journal of physiology,
F Lang, and M Paulmichl, and J Pfeilschifter, and F Friedrich, and E Wöll, and S Waldegger, and M Ritter, and E Tschernko
April 1988, Biochimica et biophysica acta,
Copied contents to your clipboard!