Gut peptides in the regulation of food intake and energy homeostasis. 2006

Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Campus, London W12 ONN, UK.

Gut hormones signal to the central nervous system to influence energy homeostasis. Evidence supports the existence of a system in the gut that senses the presence of food in the gastrointestinal tract and signals to the brain via neural and endocrine mechanisms to regulate short-term appetite and satiety. Recent evidence has shown that specific gut hormones administered at physiological or pathophysiological concentrations can influence appetite in rodents and humans. Gut hormones therefore have an important physiological role in postprandial satiety, and gut hormone signaling systems represent important pharmaceutical targets for potential antiobesity therapies. Our laboratory investigates the role of gut hormones in energy homeostasis and has a particular interest in this field of translational research. In this review we describe our initial studies and the results of more recent investigations into the effects of the gastric hormone ghrelin and the intestinal hormones peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin on energy homeostasis. We also speculate on the role of gut hormones in the future treatment of obesity.

UI MeSH Term Description Entries
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005768 Gastrointestinal Hormones HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs. Enteric Hormone,Enteric Hormones,Gastrointestinal Hormone,Intestinal Hormone,Intestinal Hormones,Hormone, Enteric,Hormone, Gastrointestinal,Hormone, Intestinal,Hormones, Enteric,Hormones, Gastrointestinal,Hormones, Intestinal
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
March 2002, Yi chuan = Hereditas,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
May 2021, International journal of molecular sciences,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
July 2006, Nature neuroscience,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
April 2021, Comprehensive Physiology,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
November 1983, British medical journal (Clinical research ed.),
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
April 2009, International journal of obesity (2005),
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
February 2006, Peptides,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
January 2014, Frontiers in neuroscience,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
December 2006, Nature,
Kevin G Murphy, and Waljit S Dhillo, and Stephen R Bloom
January 1981, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!