Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. 1991

J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
Department of Anatomy, University of Wisconsin, Madison 53706.

Anterograde and retrograde transport methods have been used to analyze the projection of the superior colliculus upon the dorsal lateral geniculate nucleus in 19 mammalian species. Our retrograde findings reveal that tectogeniculate neurons are relatively small, and lie dorsally within the superficial gray. These small tectogeniculate neurons are spatially related to a dense tier of W-cell retinal input. Our anterograde tracing results show that tectogeniculate axons are visuotopically distributed to small-celled regions of the lateral geniculate in all nineteen species. In the majority of these species, the small-celled, tectally innervated regions of the lateral geniculate lie adjacent to the optic tract and contain W-cell-like neurons. Our findings suggest that neuroanatomical demonstration of the tectogeniculate projection is a relatively simple and straightforward way of revealing regions of the lateral geniculate which contain W-cells. This is true even in species in which the lateral geniculate lacks obvious cellular laminae, and in regions of the lateral geniculate where W-cells are few in number. The present data are especially interesting in light of the cortical projections of tectally innervated, small-celled regions of the lateral geniculate to the patches or puffs within layer III of area 17. Since these regions of small-celled geniculocortical axons are co-extensive with zones ("blobs") rich in cytochrome oxidase, it might be that information carried over the tectogeniculate circuitry plays an important role in the functions of the blob system.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
January 1981, Neuroscience,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
July 1984, Brain research,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
August 1970, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
February 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
October 1996, Sheng li xue bao : [Acta physiologica Sinica],
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
April 2019, The European journal of neuroscience,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
January 1984, Experimental brain research,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
August 1980, Brain research,
J K Harting, and M F Huerta, and T Hashikawa, and D P van Lieshout
August 2016, Journal of neurophysiology,
Copied contents to your clipboard!